The hippynn python package - a modular library for atomistic machine learning with pytorch.

Related tags

Deep Learninghippynn
Overview

The hippynn python package - a modular library for atomistic machine learning with pytorch.

We aim to provide a powerful library for the training of atomistic (or physical point-cloud) machine learning. We want entry-level users to be able to efficiently train models to millions of datapoints, and a modular structure for extension or contribution.

While hippynn's development so-far has centered around the HIP-NN architecture, don't let that discourage you if you are performing research with another model. Get in touch, and let's work together to provide a high-quality implementation of your work, either as a contribution or an interface extension to your own package.

Features:

Modular set of pytorch layers for atomistic operations

  • Atomistic operations can be tricky to write in native pytorch. Most operations provided here support linear-scaling models.
  • Model energy, force charge & charge moments, bond orders, and more!
  • nn.Modules are written with minimal reference to the rest of the library; if you want to use them in your scripts without using the rest of the features provided here -- no problem!

Graph level API for simple and flexible construction of models from pytorch components.

  • Build models based on the abstract physics/mathematics of the problem, without having to think about implementation details.
  • Graph nodes support native python syntax, for example different forms of loss can be directly added.
  • Link predicted values in the model with a database entry to compare predicted and true values
  • IndexType logic records metadata about tensor structure, and provides automatic conversion to compatible structures when possible.
  • Graph API is independent of module implementation.

Plot level API for tracking your training.

  • Using the graph API, define quantities to evaluate before, during, or after training as figures using matplotlib.

Training & Experiment API

  • Integrated with graph level API
  • Pretty-printing loss metrics, generating plots periodically
  • Callbacks and checkpointing

Custom Kernels for fast execution

  • Certain operations are not efficiently written in pure pytorch, we provide alternative implementations with numba
  • These are directly linked in with pytorch Autograd -- use them like native pytorch functions.
  • These provide advantages in memory footprint and speed
  • Includes CPU and GPU execution for custom kernels

Interfaces

  • ASE: Define ASE calculators based on the graph-level API.
  • PYSEQM: Use PYSEQM calculations as nodes in a graph.

Installation

  • Clone this repository and navigate into it.
  • Run pip install .

If you fee like tinkering, do an editable install: pip install -e .

You can install using all optional dependencies from pip with: pip install -e .[full]

Notes

  • Install dependencies with pip from requirements.txt .
  • Install dependencies with conda from conda_requirements.txt .
  • If you don't want pip to install them, conda install from file before installing hippynn. You may want to use -c pytorch for the pytorch channel. For ase, you may want to use -c conda-forge.
  • Optional dependencies are in optional_dependencies.txt

We are currently under development. At the moment you should be prepared for breaking changes -- keep track of what version you are using if you need to maintain consistency.

As we clean up the rough edges, we are preparing a manuscript. If, in the mean time, you are using hippynn in your work, please cite this repository and the HIP-NN paper:

Lubbers, N., Smith, J. S., & Barros, K. (2018). Hierarchical modeling of molecular energies using a deep neural network. The Journal of chemical physics, 148(24), 241715.

See AUTHORS.txt for information on authors.

See LICENSE.txt for licensing information. hippynn is licensed under the BSD-3 license.

Triad National Security, LLC (Triad) owns the copyright to hippynn, which it identifies as project number LA-CC-19-093.

Copyright 2019. Triad National Security, LLC. All rights reserved. This program was produced under U.S. Government contract 89233218CNA000001 for Los Alamos National Laboratory (LANL), which is operated by Triad National Security, LLC for the U.S. Department of Energy/National Nuclear Security Administration. All rights in the program are reserved by Triad National Security, LLC, and the U.S. Department of Energy/National Nuclear Security Administration. The Government is granted for itself and others acting on its behalf a nonexclusive, paid-up, irrevocable worldwide license in this material to reproduce, prepare derivative works, distribute copies to the public, perform publicly and display publicly, and to permit others to do so.

Owner
Los Alamos National Laboratory
Los Alamos National Laboratory
Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Ibai Gorordo 42 Oct 07, 2022
[Preprint] "Bag of Tricks for Training Deeper Graph Neural Networks A Comprehensive Benchmark Study" by Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang

Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study Codes for [Preprint] Bag of Tricks for Training Deeper Graph

VITA 101 Dec 29, 2022
Template repository for managing machine learning research projects built with PyTorch-Lightning

Tutorial Repository with a minimal example for showing how to deploy training across various compute infrastructure.

Sidd Karamcheti 3 Feb 11, 2022
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

Capital One 97 Jan 03, 2023
Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
Visual odometry package based on hardware-accelerated NVIDIA Elbrus library with world class quality and performance.

Isaac ROS Visual Odometry This repository provides a ROS2 package that estimates stereo visual inertial odometry using the Isaac Elbrus GPU-accelerate

NVIDIA Isaac ROS 343 Jan 03, 2023
A Python library for generating new text from existing samples.

ReMarkov is a Python library for generating text from existing samples using Markov chains. You can use it to customize all sorts of writing from birt

8 May 17, 2022
Based on Stockfish neural network(similar to LcZero)

MarcoEngine Marco Engine - interesnaya neyronnaya shakhmatnaya set', kotoraya ispol'zuyet metod samoobucheniya(dostizheniye khoroshoy igy putem proboy

Marcus Kemaul 4 Mar 12, 2022
Pytorch implementation for DFN: Distributed Feedback Network for Single-Image Deraining.

DFN:Distributed Feedback Network for Single-Image Deraining Abstract Recently, deep convolutional neural networks have achieved great success for sing

6 Nov 05, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our new data division is based on COCO2017. We divide the training set into

58 Dec 23, 2022
OOD Generalization and Detection (ACL 2020)

Pretrained Transformers Improve Out-of-Distribution Robustness How does pretraining affect out-of-distribution robustness? We create an OOD benchmark

littleRound 57 Jan 09, 2023
Code release for "Masked-attention Mask Transformer for Universal Image Segmentation"

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Ro

Meta Research 1.2k Jan 02, 2023
A smart Chat bot that can help to know about corona virus and Make prediction of corona using X-ray.

TRINIT_Hum_kuchh_nahi_karenge_ML01 Document Link https://github.com/Jatin-Goyal-552/TRINIT_Hum_kuchh_nahi_karenge_ML01/blob/main/hum_kuchh_nahi_kareng

JatinGoyal 1 Feb 03, 2022
Code of the paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodner and Joachim Denzler

Part Detector Discovery This is the code used in our paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodne

Computer Vision Group Jena 17 Feb 22, 2022
[CVPR'21] Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild

IVOS-W Paper Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild Zhaoyun Yin, Jia Zheng, Weixin Luo, Shenhan Qian, Hanli

SVIP Lab 38 Dec 12, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Libo Qin 25 Sep 06, 2022
An image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testingAn image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testing

SVM Données Une base d’images contient 490 images pour l’apprentissage (400 voitures et 90 bateaux), et encore 21 images pour fait des tests. Prétrait

Achraf Rahouti 3 Nov 30, 2021
The official codes for the ICCV2021 presentation "Uniformity in Heterogeneity: Diving Deep into Count Interval Partition for Crowd Counting"

UEPNet (ICCV2021 Poster Presentation) This repository contains codes for the official implementation in PyTorch of UEPNet as described in Uniformity i

Tencent YouTu Research 15 Dec 14, 2022
Code for CVPR 2021 paper: Anchor-Free Person Search

Introduction This is the implementationn for Anchor-Free Person Search in CVPR2021 License This project is released under the Apache 2.0 license. Inst

158 Jan 04, 2023