Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks

Related tags

Deep LearningCDIL-CNN
Overview

Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks

arXiv preprint: https://arxiv.org/abs/2201.02143.

Architecture

CDIL-CNN is a novel convolutional model for sequence classification. We use symmetric dilated convolutions, a circular mixing protocol, and an average ensemble learning.

Symmetric Dilated Convolutions

Circular Mixing

CDIL-CNN

Experiments

Synthetic Task

To reproduce the synthetic data experiment results, you should:

  1. Run syn_data_generation.py;
  2. Run syn_main.py for one experiment or run syn_all.sh for all experiments.

The generator will create 6 files for each sequence length and store them in the syn_datasets folder in the following format: adding2000_{length}_train.pt adding2000_{length}_train_target.pt adding2000_{length}_test.pt adding2000_{length}_test_target.pt adding2000_{length}_val.pt adding2000_{length}_val_target.pt

By default, it iterates over 8 sequence lengths: [2**7, 2**8, 2**9, 2**10, 2**11, 2**12, 2**13, 2**14].

You can run different models for different lengths. The syn_log folder will save all results.

We provide our used configurations in syn_config.py.

Long Range Arena

Long Range Arena (LRA) is a public benchmark suite. The datasets and the download link can be found in the official GitHub repository.

To reproduce the LRA experiment results, you should:

  1. Download lra_release.gz (~7.7 GB), extract it, move the folder ./lra_release/lra_release into our create_datasets folder, and run all_create_datasets.sh.
  2. Run lra_main.py for one experiment or run lra_all.sh for all experiments.

The dataset creators will create 3 files for each task and store them in the lra_datasets folder in the following format: {task}.train.pickle {task}.test.pickle {task}.dev.pickle

You can run different models on different tasks. The lra_log folder will save all results.

We provide our used configurations in lra_config.py.

Time Series

The UEA & UCR Repository consists of various time series classification datasets. We use three audio datasets: FruitFlies, RightWhaleCalls, and MosquitoSound.

To reproduce the time series results, you should:

  1. Download the datasets, extract them, move the extracted folders into our time_datasets folder, and run time_arff_generation.py.
  2. Run time_main.py for one experiment or run time_all.sh for all experiments.

The generator will create 2 files for each dataset and store them in the time_datasets folder in the following format: {dataset}_train.csv {dataset}_test.csv

You can run different models on different datasets. The time_log folder will save all results.

We provide our used configurations in time_main.py.

This Deep Learning Model Predicts that from which disease you are suffering.

Deep-Learning-Project This Deep Learning Model Predicts that from which disease you are suffering. This Project Covers the Topics of Deep Learning Int

Jai Viral Doshi 0 Jan 20, 2022
This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

Sergi Caelles 828 Jan 05, 2023
BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net

BraTS(Brain Tumour Segmentation) using V-Net This project is an approach to dete

Rituraj Dutta 7 Nov 27, 2022
Code accompanying "Dynamic Neural Relational Inference" from CVPR 2020

Code accompanying "Dynamic Neural Relational Inference" This codebase accompanies the paper "Dynamic Neural Relational Inference" from CVPR 2020. This

Colin Graber 48 Dec 23, 2022
A list of multi-task learning papers and projects.

This page contains a list of papers on multi-task learning for computer vision. Please create a pull request if you wish to add anything. If you are interested, consider reading our recent survey pap

svandenh 297 Dec 17, 2022
Code for DeepCurrents: Learning Implicit Representations of Shapes with Boundaries

DeepCurrents | Webpage | Paper DeepCurrents: Learning Implicit Representations of Shapes with Boundaries David Palmer*, Dmitriy Smirnov*, Stephanie Wa

Dima Smirnov 36 Dec 08, 2022
Answer a series of contextually-dependent questions like they may occur in natural human-to-human conversations.

SCAI-QReCC-21 [leaderboards] [registration] [forum] [contact] [SCAI] Answer a series of contextually-dependent questions like they may occur in natura

19 Sep 28, 2022
PyTorch implementation of the implicit Q-learning algorithm (IQL)

Implicit-Q-Learning (IQL) PyTorch implementation of the implicit Q-learning algorithm IQL (Paper) Currently only implemented for online learning. Offl

Sebastian Dittert 27 Dec 30, 2022
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
[CoRL 21'] TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo

TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo Lukas Koestler1*    Nan Yang1,2*,†    Niclas Zeller2,3    Daniel Cremers1

TUM Computer Vision Group 744 Jan 04, 2023
Real-Time SLAM for Monocular, Stereo and RGB-D Cameras, with Loop Detection and Relocalization Capabilities

ORB-SLAM2 Authors: Raul Mur-Artal, Juan D. Tardos, J. M. M. Montiel and Dorian Galvez-Lopez (DBoW2) 13 Jan 2017: OpenCV 3 and Eigen 3.3 are now suppor

Raul Mur-Artal 7.8k Dec 30, 2022
Membership Inference Attack against Graph Neural Networks

MIA GNN Project Starter If you meet the version mismatch error for Lasagne library, please use following command to upgrade Lasagne library. pip insta

6 Nov 09, 2022
MAT: Mask-Aware Transformer for Large Hole Image Inpainting

MAT: Mask-Aware Transformer for Large Hole Image Inpainting (CVPR2022, Oral) Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, Jiaya Jia [Paper] News This

254 Dec 29, 2022
PlenOctrees: NeRF-SH Training & Conversion

PlenOctrees Official Repo: NeRF-SH training and conversion This repository contains code to train NeRF-SH and to extract the PlenOctree, constituting

Alex Yu 323 Dec 29, 2022
Second-Order Neural ODE Optimizer, NeurIPS 2021 spotlight

Second-order Neural ODE Optimizer (NeurIPS 2021 Spotlight) [arXiv] ✔️ faster convergence in wall-clock time | ✔️ O(1) memory cost | ✔️ better test-tim

Guan-Horng Liu 39 Oct 22, 2022
The personal repository of the work: *DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer*.

DanceNet3D The personal repository of the work: DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer. Dataset and Results Pleas

南嘉Nanga 36 Dec 21, 2022
Official code for "Stereo Waterdrop Removal with Row-wise Dilated Attention (IROS2021)"

Stereo-Waterdrop-Removal-with-Row-wise-Dilated-Attention This repository includes official codes for "Stereo Waterdrop Removal with Row-wise Dilated A

29 Oct 01, 2022
The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data This repository provides the implementation details for

124 Dec 27, 2022
HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records

HiPAL Code for KDD'22 Applied Data Science Track submission -- HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electro

Hanyang Liu 4 Aug 08, 2022
The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting

About The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting The demo program was only tested under Conda in a standard

Anh-Dzung Doan 5 Nov 28, 2022