When doing audio and video sentiment recognition, I found that a lot of code is duplicated, often a function in different time debugging for a long time, based on this problem, I want to manage all the previous work, organized into an open source library can be iterative. For their own use and others.

Overview

FastAudioVisual license

Our project is developed here. The goal finish time is March 01, 2021

What is FastAudioVisual?

FastAudioVisual is a tool that allows us to develop and analyse research in the audiovisual domain. The framework of this model as follow: 在这里插入图片描述

As we can see that this project has five parts. Here is the detail of each part.

  1. DataRegular: It causes many questions due to different file structure in some research. In this work, we develop a series of functions to make your database regular with the next step. All of these funfunctions arested and regular by RAVDESS which is a big database in multimodal emotion recognition.

  2. FeatureExtract: Features extraction is important for model study. There are many features can be extracted for input. For audio, MFCC, FBank, crossing-zero rate and soon on can be used. For visual, gray, RGB, optical flow diagram can be used. In this part, we will build some API to extract these features.

  3. SampleModel: With the develop of hardwares, deep learning has got siginificant improvement in every area. Many area has been regular by deep learning. Therefore, we collect some classical model for basic research. This part will make you have a enough evaluate and experiment. (In the beginning, I struggled to choose Pytorch and fastai).

  4. ModelDesign: In this part, we focus on audiovisual fusion method and model design for audiovisual other domain( including loss , framework, other trick.). It collect some research work and code. Also, we can replace simplemodel into this part. Making the result is better.

  5. Analysis: Based on above parts, we will using some tool to analysis the result of this experiment. Such as confusion matrix, CAM, feature distrbution.

  6. Test: Some demo for using this project.

  7. Others: It includes some paper or blog for this area.

In general, All of these design is for developing your audiovisual research fastly by this ttool!

Develop and Iteration

3. 功能内容与具体

4. 后期维护与迭代

Installation

You can install, upgrade, uninstall count-line with these commands(without $):

$ pip install FastAudioVisual
$ pip install --upgrade FastAudioVisual
$ pip unstall FastAudioVisual

Help

usage: line.py [-h] [-s SUFFIX | -f FILTER] [-d]

count the amount of lines and files under the current directory

optional arguments:
  -h, --help            show this help message and exit
  -s SUFFIX, --suffix SUFFIX
                        count by suffix file name, format: .suffix1.suffix2...
                        e.g: .cpp.py (without space)
  -f FILTER, --filter FILTER
                        count without filter name, format: .suffix1.suffix2...
                        e.g: .cpp.py (without space)
  -d, --detail          show detail results

Examples

  1. Count all files under the current directory:
$ line
Search in /Users/macbook/Desktop/Examples1/
file count: 4
line count: 373
  1. Count all files under the current directory with detail results:
$ line -d
Search in /Users/macbook/Desktop/Examples2/

		========================================
		文件后缀名	文件数		总行数
		

		   .py		5		397
		

		   .cpp		240		11346
		

		总文件数: 245	总行数: 11743
		========================================
		

  1. Count specified files under the current directory, using -s to pass suffix as parameters, if there are more than one parameter, don't have space, for example, count cpp files and python files:
$ line -s .cpp.py
Search in /Users/macbook/Desktop/Examples3/
file count: 3
line count: 243
$ line -s .cpp.py -d
Search in /Users/macbook/Desktop/Examples3/

		========================================
		文件后缀名	文件数		总行数
		

		   .py		5		397
		

		   .cpp		240		11346
		

		总文件数: 245	总行数: 11743
		========================================
		
  1. Count files under the current directory with filter:
$ line -f .py -d
Search in /Users/macbook/Desktop/Examples4/

		========================================
		文件后缀名	文件数		总行数
		

		   .cpp		240		11346
		

		总文件数: 240	总行数: 11528
		========================================
$ line -d
Search in /Users/macbook/Desktop/Examples4/

		========================================
		文件后缀名	文件数		总行数
		

		   .py		5		397
		

		   .cpp		240		11346
		

		总文件数: 245	总行数: 11743
		========================================

		
The projects lets you extract glossary words and their definitions from a given piece of text automatically using NLP techniques

Unsupervised technique to Glossary and Definition Extraction Code Files GPT2-DefinitionModel.ipynb - GPT-2 model for definition generation. Data_Gener

Prakhar Mishra 28 May 25, 2021
硕士期间自学的NLP子任务,供学习参考

NLP_Chinese_down_stream_task 自学的NLP子任务,供学习参考 任务1 :短文本分类 (1).数据集:THUCNews中文文本数据集(10分类) (2).模型:BERT+FC/LSTM,Pytorch实现 (3).使用方法: 预训练模型使用的是中文BERT-WWM, 下载地

12 May 31, 2022
QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
Backend for the Autocomplete platform. An AI assisted coding platform.

Introduction A custom predictor allows you to deploy your own prediction implementation, useful when the existing serving implementations don't fit yo

Tatenda Christopher Chinyamakobvu 1 Jan 31, 2022
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022
Just a basic Telegram AI chat bot written in Python using Pyrogram.

Nikko ChatBot Just a basic Telegram AI chat bot written in Python using Pyrogram. Requirements Python 3.7 or higher. A bot token. Installation $ https

ʀᴇxɪɴᴀᴢᴏʀ 2 Oct 21, 2022
Transformer-based Text Auto-encoder (T-TA) using TensorFlow 2.

T-TA (Transformer-based Text Auto-encoder) This repository contains codes for Transformer-based Text Auto-encoder (T-TA, paper: Fast and Accurate Deep

Jeong Ukjae 13 Dec 13, 2022
Binaural Speech Synthesis

Binaural Speech Synthesis This repository contains code to train a mono-to-binaural neural sound renderer. If you use this code or the provided datase

Facebook Research 135 Dec 18, 2022
Outreachy TFX custom component project

Schema Curation Custom Component Outreachy TFX custom component project This repo contains the code for Schema Curation Custom Component made as a par

Robert Crowe 5 Jul 16, 2021
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN

artificial intelligence cosmic love and attention fire in the sky a pyramid made of ice a lonely house in the woods marriage in the mountains lantern

Phil Wang 2.3k Jan 01, 2023
AI and Machine Learning workflows on Anthos Bare Metal.

Hybrid and Sovereign AI on Anthos Bare Metal Table of Contents Overview Terraform as IaC Substrate ABM Cluster on GCE using Terraform TensorFlow ResNe

Google Cloud Platform 8 Nov 26, 2022
NLP codes implemented with Pytorch (w/o library such as huggingface)

NLP_scratch NLP codes implemented with Pytorch (w/o library such as huggingface) scripts ├── models: Neural Network models ├── data: codes for dataloa

3 Dec 28, 2021
Scene Text Retrieval via Joint Text Detection and Similarity Learning

This is the code of "Scene Text Retrieval via Joint Text Detection and Similarity Learning". For more details, please refer to our CVPR2021 paper.

79 Nov 29, 2022
Arabic speech recognition, classification and text-to-speech.

klaam Arabic speech recognition, classification and text-to-speech using many advanced models like wave2vec and fastspeech2. This repository allows tr

ARBML 177 Dec 27, 2022
Idea is to build a model which will take keywords as inputs and generate sentences as outputs.

keytotext Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: Marketing Sea

Gagan Bhatia 364 Jan 03, 2023
🍊 PAUSE (Positive and Annealed Unlabeled Sentence Embedding), accepted by EMNLP'2021 🌴

PAUSE: Positive and Annealed Unlabeled Sentence Embedding Sentence embedding refers to a set of effective and versatile techniques for converting raw

EQT 21 Dec 15, 2022
SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors

SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors [Paper] [Project Website] Pytorch implementation for SAVI2I. We

Qi Mao 44 Dec 30, 2022
Programme de chiffrement et de déchiffrement inverse d'un message en python3.

Chiffrement Inverse En Python3 Programme de chiffrement et de déchiffrement inverse d'un message en python3. Explication du chiffrement inverse avec c

Malik Makkes 2 Mar 26, 2022
KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark.

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022