This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationships.

Overview

Auto-Lambda

This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationships.

We encourage readers to check out our project page, including more interesting discussions and insights which are not covered in our technical paper.

Multi-task Methods

We implemented all weighting and gradient-based baselines presented in the paper for computer vision tasks: Dense Prediction Tasks (for NYUv2 and CityScapes) and Multi-domain Classification Tasks (for CIFAR-100).

Specifically, we have covered the implementation of these following multi-task optimisation methods:

Weighting-based:

Gradient-based:

Note: Applying a combination of both weighting and gradient-based methods can further improve performance.

Datasets

We applied the same data pre-processing following our previous project: MTAN which experimented on:

  • NYUv2 [3 Tasks] - 13 Class Segmentation + Depth Estimation + Surface Normal. [288 x 384] Resolution.
  • CityScapes [3 Tasks] - 19 Class Segmentation + 10 Class Part Segmentation + Disparity (Inverse Depth) Estimation. [256 x 512] Resolution.

Note: We have included a new task: Part Segmentation for CityScapes dataset. The pre-processing file for CityScapes has also been included in the dataset folder.

Experiments

All experiments were written in PyTorch 1.7 and can be trained with different flags (hyper-parameters) when running each training script. We briefly introduce some important flags below.

Flag Name Usage Comments
network choose multi-task network: split, mtan both architectures are based on ResNet-50; only available in dense prediction tasks
dataset choose dataset: nyuv2, cityscapes only available in dense prediction tasks
weight choose weighting-based method: equal, uncert, dwa, autol only autol will behave differently when set to different primary tasks
grad_method choose gradient-based method: graddrop, pcgrad, cagrad weight and grad_method can be applied together
task choose primary tasks: seg, depth, normal for NYUv2, seg, part_seg, disp for CityScapes, all: a combination of all standard 3 tasks only available in dense prediction tasks
with_noise toggle on to add noise prediction task for training (to evaluate robustness in auxiliary learning setting) only available in dense prediction tasks
subset_id choose domain ID for CIFAR-100, choose -1 for the multi-task learning setting only available in CIFAR-100 tasks
autol_init initialisation of Auto-Lambda, default 0.1 only available when applying Auto-Lambda
autol_lr learning rate of Auto-Lambda, default 1e-4 for NYUv2 and 3e-5 for CityScapes only available when applying Auto-Lambda

Training Auto-Lambda in Multi-task / Auxiliary Learning Mode:

python trainer_dense.py --dataset [nyuv2, cityscapes] --task [PRIMARY_TASK] --weight autol --gpu 0   # for NYUv2 or CityScapes dataset
python trainer_cifar.py --subset_id [PRIMARY_DOMAIN_ID] --weight autol --gpu 0   # for CIFAR-100 dataset

Training in Single-task Learning Mode:

python trainer_dense_single.py --dataset [nyuv2, cityscapes] --task [PRIMARY_TASK]  --gpu 0   # for NYUv2 or CityScapes dataset
python trainer_cifar_single.py --subset_id [PRIMARY_DOMAIN_ID] --gpu 0   # for CIFAR-100 dataset

Note: All experiments in the original paper were trained from scratch without pre-training.

Benchmark

For standard 3 tasks in NYUv2 (without dense prediction task) in the multi-task learning setting with Split architecture, please follow the results below.

Method Sem. Seg. (mIOU) Depth (aErr.) Normal (mDist.) Delta MTL
Single 43.37 52.24 22.40 -
Equal 44.64 43.32 24.48 +3.57%
DWA 45.14 43.06 24.17 +4.58%
GradDrop 45.39 43.23 24.18 +4.65%
PCGrad 45.15 42.38 24.13 +5.09%
Uncertainty 45.98 41.26 24.09 +6.50%
CAGrad 46.14 41.91 23.52 +7.05%
Auto-Lambda 47.17 40.97 23.68 +8.21%
Auto-Lambda + CAGrad 48.26 39.82 22.81 +11.07%

Note: The results were averaged across three random seeds. You should expect the error range less than +/-1%.

Citation

If you found this code/work to be useful in your own research, please considering citing the following:

@article{liu2022auto-lambda,
  title={Auto-Lambda: Disentangling Dynamic Task Relationships},
  author={Liu, Shikun and James, Stephen and Davison, Andrew J and Johns, Edward},
  journal={arXiv preprint arXiv:2202.03091},
  year={2022}
}

Acknowledgement

We would like to thank @Cranial-XIX for his clean implementation for gradient-based optimisation methods.

Contact

If you have any questions, please contact [email protected].

Owner
Shikun Liu
Ph.D. Student, The Dyson Robotics Lab at Imperial College.
Shikun Liu
Repository containing the PhD Thesis "Formal Verification of Deep Reinforcement Learning Agents"

Getting Started This repository contains the code used for the following publications: Probabilistic Guarantees for Safe Deep Reinforcement Learning (

Edoardo Bacci 5 Aug 31, 2022
Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis

Hierarchical Attention Mining (HAM) for weakly-supervised abnormality localization This is the official PyTorch implementation for the HAM method. Pap

Xi Ouyang 22 Jan 02, 2023
Code for the paper titled "Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks" (NeurIPS 2021 Spotlight).

Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks This repository contains the code and pre-trained

Hassan Dbouk 7 Dec 05, 2022
Official MegEngine implementation of CREStereo(CVPR 2022 Oral).

[CVPR 2022] Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation This repository contains MegEngine implementation of ou

MEGVII Research 309 Dec 30, 2022
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation

Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation Introduction ACoSP is an online pruning algorithm that compr

Merantix 8 Dec 07, 2022
Latte: Cross-framework Python Package for Evaluation of Latent-based Generative Models

Cross-framework Python Package for Evaluation of Latent-based Generative Models Latte Latte (for LATent Tensor Evaluation) is a cross-framework Python

Karn Watcharasupat 30 Sep 08, 2022
Tutorials and implementations for "Self-normalizing networks"

Self-Normalizing Networks Tutorials and implementations for "Self-normalizing networks"(SNNs) as suggested by Klambauer et al. (arXiv pre-print). Vers

Institute of Bioinformatics, Johannes Kepler University Linz 1.6k Jan 07, 2023
[CVPR'22] Official PyTorch Implementation of Collaborative Transformers for Grounded Situation Recognition

[CVPR'22] Collaborative Transformers for Grounded Situation Recognition Paper | Model Checkpoint This is the official PyTorch implementation of Collab

Junhyeong Cho 29 Dec 10, 2022
Official Code Implementation of the paper : XAI for Transformers: Better Explanations through Conservative Propagation

Official Code Implementation of The Paper : XAI for Transformers: Better Explanations through Conservative Propagation For the SST-2 and IMDB expermin

Ameen Ali 23 Dec 30, 2022
PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis"

PyTorch NeRF and pixelNeRF NeRF: Tiny NeRF: pixelNeRF: This repository contains minimal PyTorch implementations of the NeRF model described in "NeRF:

Michael A. Alcorn 178 Dec 20, 2022
ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

Snapdragon Lee 2 Dec 16, 2022
TCPNet - Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition

Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition This is an implementation of TCPNet. Introduction For video recognition task, a g

Zilin Gao 21 Dec 08, 2022
This is an official implementation of our CVPR 2021 paper "Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression" (https://arxiv.org/abs/2104.02300)

Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression Introduction In this paper, we are interested in the bottom-up paradigm of estima

HRNet 367 Dec 27, 2022
Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On

UPMT Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On See main.py as an example: from model import PopM

7 Sep 01, 2022
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer Summary Explorer is a tool to visually inspect the summaries from several state-of-the-art neural summarization models across multipl

Webis 42 Aug 14, 2022
Implementation of SSMF: Shifting Seasonal Matrix Factorization

SSMF Implementation of SSMF: Shifting Seasonal Matrix Factorization, Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, Bryan Hooi. NeurIPS, 2021

Koki Kawabata 9 Jun 10, 2022
Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation

Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation Experiment Setting: CIFAR10 (downloaded and saved in ./DATA

John Seon Keun Yi 38 Dec 27, 2022
This is a project based on ConvNets used to identify whether a road is clean or dirty. We have used MobileNet as our base architecture and the weights are based on imagenet.

PROJECT TITLE: CLEAN/DIRTY ROAD DETECTION USING TRANSFER LEARNING Description: This is a project based on ConvNets used to identify whether a road is

Faizal Karim 3 Nov 06, 2022
This repository includes code of my study about Asynchronous in Frequency domain of GAN images.

Exploring the Asynchronous of the Frequency Spectra of GAN-generated Facial Images Binh M. Le & Simon S. Woo, "Exploring the Asynchronous of the Frequ

4 Aug 06, 2022