This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationships.

Overview

Auto-Lambda

This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationships.

We encourage readers to check out our project page, including more interesting discussions and insights which are not covered in our technical paper.

Multi-task Methods

We implemented all weighting and gradient-based baselines presented in the paper for computer vision tasks: Dense Prediction Tasks (for NYUv2 and CityScapes) and Multi-domain Classification Tasks (for CIFAR-100).

Specifically, we have covered the implementation of these following multi-task optimisation methods:

Weighting-based:

Gradient-based:

Note: Applying a combination of both weighting and gradient-based methods can further improve performance.

Datasets

We applied the same data pre-processing following our previous project: MTAN which experimented on:

  • NYUv2 [3 Tasks] - 13 Class Segmentation + Depth Estimation + Surface Normal. [288 x 384] Resolution.
  • CityScapes [3 Tasks] - 19 Class Segmentation + 10 Class Part Segmentation + Disparity (Inverse Depth) Estimation. [256 x 512] Resolution.

Note: We have included a new task: Part Segmentation for CityScapes dataset. The pre-processing file for CityScapes has also been included in the dataset folder.

Experiments

All experiments were written in PyTorch 1.7 and can be trained with different flags (hyper-parameters) when running each training script. We briefly introduce some important flags below.

Flag Name Usage Comments
network choose multi-task network: split, mtan both architectures are based on ResNet-50; only available in dense prediction tasks
dataset choose dataset: nyuv2, cityscapes only available in dense prediction tasks
weight choose weighting-based method: equal, uncert, dwa, autol only autol will behave differently when set to different primary tasks
grad_method choose gradient-based method: graddrop, pcgrad, cagrad weight and grad_method can be applied together
task choose primary tasks: seg, depth, normal for NYUv2, seg, part_seg, disp for CityScapes, all: a combination of all standard 3 tasks only available in dense prediction tasks
with_noise toggle on to add noise prediction task for training (to evaluate robustness in auxiliary learning setting) only available in dense prediction tasks
subset_id choose domain ID for CIFAR-100, choose -1 for the multi-task learning setting only available in CIFAR-100 tasks
autol_init initialisation of Auto-Lambda, default 0.1 only available when applying Auto-Lambda
autol_lr learning rate of Auto-Lambda, default 1e-4 for NYUv2 and 3e-5 for CityScapes only available when applying Auto-Lambda

Training Auto-Lambda in Multi-task / Auxiliary Learning Mode:

python trainer_dense.py --dataset [nyuv2, cityscapes] --task [PRIMARY_TASK] --weight autol --gpu 0   # for NYUv2 or CityScapes dataset
python trainer_cifar.py --subset_id [PRIMARY_DOMAIN_ID] --weight autol --gpu 0   # for CIFAR-100 dataset

Training in Single-task Learning Mode:

python trainer_dense_single.py --dataset [nyuv2, cityscapes] --task [PRIMARY_TASK]  --gpu 0   # for NYUv2 or CityScapes dataset
python trainer_cifar_single.py --subset_id [PRIMARY_DOMAIN_ID] --gpu 0   # for CIFAR-100 dataset

Note: All experiments in the original paper were trained from scratch without pre-training.

Benchmark

For standard 3 tasks in NYUv2 (without dense prediction task) in the multi-task learning setting with Split architecture, please follow the results below.

Method Sem. Seg. (mIOU) Depth (aErr.) Normal (mDist.) Delta MTL
Single 43.37 52.24 22.40 -
Equal 44.64 43.32 24.48 +3.57%
DWA 45.14 43.06 24.17 +4.58%
GradDrop 45.39 43.23 24.18 +4.65%
PCGrad 45.15 42.38 24.13 +5.09%
Uncertainty 45.98 41.26 24.09 +6.50%
CAGrad 46.14 41.91 23.52 +7.05%
Auto-Lambda 47.17 40.97 23.68 +8.21%
Auto-Lambda + CAGrad 48.26 39.82 22.81 +11.07%

Note: The results were averaged across three random seeds. You should expect the error range less than +/-1%.

Citation

If you found this code/work to be useful in your own research, please considering citing the following:

@article{liu2022auto-lambda,
  title={Auto-Lambda: Disentangling Dynamic Task Relationships},
  author={Liu, Shikun and James, Stephen and Davison, Andrew J and Johns, Edward},
  journal={arXiv preprint arXiv:2202.03091},
  year={2022}
}

Acknowledgement

We would like to thank @Cranial-XIX for his clean implementation for gradient-based optimisation methods.

Contact

If you have any questions, please contact [email protected].

Owner
Shikun Liu
Ph.D. Student, The Dyson Robotics Lab at Imperial College.
Shikun Liu
Ros2-voiceroid2 - ROS2 wrapper package of VOICEROID2

ros2_voiceroid2 ROS2 wrapper package of VOICEROID2 Windows Only Installation Ins

Nkyoku 1 Jan 23, 2022
Federated_learning codes used for the the paper "Evaluation of Federated Learning Aggregation Algorithms" and "A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison"

Federated Distance (FedDist) This is the code accompanying the Percom2021 paper "A Federated Learning Aggregation Algorithm for Pervasive Computing: E

GETALP 8 Jan 03, 2023
Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE Overview Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION. LiMuSE explores group communication on a multi

Auditory Model and Cognitive Computing Lab 17 Oct 26, 2022
Dataset for the Research2Clinics @ NeurIPS 2021 Paper: What Do You See in this Patient? Behavioral Testing of Clinical NLP Models

Behavioral Testing of Clinical NLP Models This repository contains code for testing the behavior of clinical prediction models based on patient letter

Betty van Aken 2 Sep 20, 2022
Official implementation of CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21

CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21 For more information, check out the paper on [arXiv]. Training with different

Sunghwan Hong 120 Jan 04, 2023
A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization

sam.pytorch A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization ( Foret+2020) Paper, Official implementa

Ryuichiro Hataya 102 Dec 28, 2022
An inofficial PyTorch implementation of PREDATOR based on KPConv.

PREDATOR: Registration of 3D Point Clouds with Low Overlap An inofficial PyTorch implementation of PREDATOR based on KPConv. The code has been tested

ZhuLifa 14 Aug 03, 2022
Code for "Reconstructing 3D Human Pose by Watching Humans in the Mirror", CVPR 2021 oral

Reconstructing 3D Human Pose by Watching Humans in the Mirror Qi Fang*, Qing Shuai*, Junting Dong, Hujun Bao, Xiaowei Zhou CVPR 2021 Oral The videos a

ZJU3DV 178 Dec 13, 2022
Systematic generalisation with group invariant predictions

Requirements are Python 3, TensorFlow v1.14, Numpy, Scipy, Scikit-Learn, Matplotlib, Pillow, Scikit-Image, h5py, tqdm. Experiments were run on V100 GPUs (16 and 32GB).

Faruk Ahmed 30 Dec 01, 2022
All materials of Cassandra Event, Udyam'22

Cassandra 2022 Workspace Workshop Materials Workshop-1 Workshop-2 Workshop-3 Workshop-4 Assignments Assignment-1 Assignment-2 Assignment-3 Resources P

36 Dec 31, 2022
Official implementations of PSENet, PAN and PAN++.

News (2021/11/03) Paddle implementation of PAN, see Paddle-PANet. Thanks @simplify23. (2021/04/08) PSENet and PAN are included in MMOCR. Introduction

395 Dec 14, 2022
Human Action Controller - A human action controller running on different platforms.

Human Action Controller (HAC) Goal A human action controller running on different platforms. Fun Easy-to-use Accurate Anywhere Fun Examples Mouse Cont

27 Jul 20, 2022
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
A curated list of awesome Model-Based RL resources

Awesome Model-Based Reinforcement Learning This is a collection of research papers for model-based reinforcement learning (mbrl). And the repository w

OpenDILab 427 Jan 03, 2023
Fairness Metrics: All you need to know

Fairness Metrics: All you need to know Testing machine learning software for ethical bias has become a pressing current concern. Recent research has p

Anonymous2020 1 Jan 17, 2022
Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning

advantage-weighted-regression Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning, by Peng et al. (

Omar D. Domingues 1 Dec 02, 2021
Implementation of ConvMixer for "Patches Are All You Need? 🤷"

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?" by Asher

CMU Locus Lab 934 Jan 08, 2023
Make Watson Assistant send messages to your Discord Server

Make Watson Assistant send messages to your Discord Server Prerequisites Sign up for an IBM Cloud account. Fill in the required information and press

1 Jan 10, 2022
Implementation for Curriculum DeepSDF

Curriculum-DeepSDF This repository is an implementation for Curriculum DeepSDF. Full paper is available here. Preparation Please follow original setti

Haidong Zhu 69 Dec 29, 2022
for a paper about leveraging discourse markers for training new models

TSLM-DISCOURSE-MARKERS Scope This repository contains: (1) Code to extract discourse markers from wikipedia (TSA). (1) Code to extract significant dis

International Business Machines 6 Nov 02, 2022