Chinese clinical named entity recognition using pre-trained BERT model

Related tags

Deep Learningbertcner
Overview

Chinese clinical named entity recognition (CNER) using pre-trained BERT model

Introduction

Code for paper Chinese clinical named entity recognition with variant neural structures based on BERT methods

Paper url: https://www.sciencedirect.com/science/article/pii/S1532046420300502

We pre-trained BERT model to improve the performance of Chinese CNER. Different layers such as Long Short-Term Memory (LSTM) and Conditional Random Field (CRF) were used to extract the text features and decode the predicted tags respectively. And we also proposed a new strategy to incorporate dictionary features into the model. Radical features of Chinese characters were also used to improve the model performance.

Model structure

Model Structure

Usage

Pre-trained models

For replication, we uploaded two models in Baidu Netdisk.

Link: https://pan.baidu.com/s/1obzG6OSbu77duhusWg2xmQ Code: k53q

Examples

To replicate the result of CCKS-2018 dataset

python main.py \
--data_dir=data/ccks_2018 \
--bert_model=model/  \
--output_dir=./output  \
--terminology_dicts_path="{'medicine':'data/ccks_2018/drug_dict.txt','surgery':'data/ccks_2018/surgery_dict.txt'}" \
--radical_dict_path data/radical_dict.txt \
--constant=0 \
--add_radical_or_not=True \
--radical_one_hot=False \
--radical_emb_dim=20 \
--max_seq_length=480 \
--do_train=True \
--do_eval=True \
--train_batch_size=6 \
--eval_batch_size=4 \
--hidden_dim=64 \
--learning_rate=5e-5 \
--num_train_epochs=5 \
--gpu_id=3 \

Results

CCKS-2018 dataset

Method P R F1
FT-BERT+BiLSTM+CRF 88.57 89.02 88.80
+dictionary 88.58 89.17 88.87
+radical(one-hot encoding) 88.51 89.39 88.95
+radical(random embedding) 89.24 89.11 89.17
+dictionary +radical 89.42 89.22 89.32
ensemble 89.59 89.54 89.56
Team Name Method F1
Yang and Huang (2018) CRF(feature-rich + rule) 89.26
heiheihahei LSTM-CRF(ensemble) 88.92
Luo et al.(2018) LSTM-CRF(ensemble) 88.63
dous12 - 88.37
chengachengcheng - 88.30
NUBT-IBDL - 87.62
Our FT-BERT+BiLSTM +CRF+Dictionary(ensemble) 89.56

CCKS-2017 dataset

Method P R F1
FT-BERT+BiLSTM+CRF 91.64 90.98 91.31
+dictionary 91.49 90.97 91.23
+radical(one-hot encoding) 91.83 90.80 91.35
+radical(random embedding) 92.07 90.77 91.42
+dictionary+radical 91.76 90.88 91.32
ensemble 92.06 91.15 91.60
Team Name Method F1
Qiu et al. (2018b) RD-CNN-CRF 91.32
Wang et al. (2019) BiLSTM-CRF+Dictionary 91.24
Hu et al. (2017) BiLSTM-FEA(ensemble) 91.03
Zhang et al. (2018) BiLSTM-CRF(mt+att+ms) 90.52
Xia and Wang (2017) BiLSTM-CRF(ensemble) 89.88
Ouyang et al. (2017) BiRNN-CRF 88.85
Li et al. (2017) BiLSTM-CRF(specialized +lexicons) 87.95
Our FT-BERT+BiLSTM +CRF+Dictionary(ensemble) 91.60
Owner
Xiangyang Li
Xiangyang Li
Code for the paper Hybrid Spectrogram and Waveform Source Separation

Demucs Music Source Separation This is the 3rd release of Demucs (v3), featuring hybrid source separation. For the waveform only Demucs (v2): Go this

Meta Research 4.8k Jan 04, 2023
TensorFlow GNN is a library to build Graph Neural Networks on the TensorFlow platform.

TensorFlow GNN This is an early (alpha) release to get community feedback. It's under active development and we may break API compatibility in the fut

889 Dec 30, 2022
Example-custom-ml-block-keras - Custom Keras ML block example for Edge Impulse

Custom Keras ML block example for Edge Impulse This repository is an example on

Edge Impulse 8 Nov 02, 2022
This is the first released system towards complex meters` detection and recognition, which is implemented by computer vision techniques.

A three-stage detection and recognition pipeline of complex meters in wild This is the first released system towards detection and recognition of comp

Yan Shu 19 Nov 28, 2022
Official code for "InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization" (ICLR 2020, spotlight)

InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization Authors: Fan-yun Sun, Jordan Hoffm

Fan-Yun Sun 232 Dec 28, 2022
Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.

Pretrain-Recsys This is our Tensorflow implementation for our WSDM 2021 paper: Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, Hong Chen. Pre-Training

30 Nov 14, 2022
Gesture-controlled Video Game. Just swing your finger and play the game without touching your PC

Gesture Controlled Video Game Detailed Blog : https://www.analyticsvidhya.com/blog/2021/06/gesture-controlled-video-game/ Introduction This project is

Devbrat Anuragi 35 Jan 06, 2023
Unicorn can be used for performance analyses of highly configurable systems with causal reasoning

Unicorn can be used for performance analyses of highly configurable systems with causal reasoning. Users or developers can query Unicorn for a performance task.

AISys Lab 27 Jan 05, 2023
Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

26 Dec 07, 2022
Repository for the electrical and ICT benchmark model developed in the ERIGrid 2.0 project.

Benchmark Model Electrical and ICT System This repository contains the documentation, code, and models for the electrical and ICT benchmark model deve

ERIGrid 2.0 1 Nov 29, 2021
Official PyTorch implementation of the paper: Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting.

Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting Official PyTorch implementation of the paper: Improving Graph Neural Net

Giorgos Bouritsas 58 Dec 31, 2022
Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification

Fine-grainedImageClassification Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification We trained model here: lin

ZhenchaoTang 14 Oct 21, 2022
TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

912 Jan 08, 2023
RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching

RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching This repository contains the source code for our paper: RAFT-Stereo: Multilevel

Princeton Vision & Learning Lab 328 Jan 09, 2023
Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis (CVPR2022)

Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis Multi-View Consistent Generative Adversarial Networks for 3D-aware

Xuanmeng Zhang 78 Dec 10, 2022
Notebooks for my "Deep Learning with TensorFlow 2 and Keras" course

Deep Learning with TensorFlow 2 and Keras – Notebooks This project accompanies my Deep Learning with TensorFlow 2 and Keras trainings. It contains the

Aurélien Geron 1.9k Dec 15, 2022
Pytoydl: A toy deep learning framework built upon numpy.

Documents: https://pytoydl.readthedocs.io/zh/latest/ Pytoydl A toy deep learning framework built upon numpy. You can star this repository to keep trac

28 Dec 10, 2022
Protect against subdomain takeover

domain-protect scans Amazon Route53 across an AWS Organization for domain records vulnerable to takeover deploy to security audit account scan your en

OVO Technology 0 Nov 17, 2022
TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
Rl-quickstart - Reinforcement Learning Quickstart

Reinforcement Learning Quickstart To get setup with the repository, git clone ht

UCLA DataRes 3 Jun 16, 2022