Reso is a low-level circuit design language and simulator, inspired by things like Redstone, Conway's Game of Life, and Wireworld.

Related tags

Miscellaneousreso
Overview

Reso

Reso logo

Reso is a low-level circuit design language and simulator, inspired by things like Redstone, Conway's Game of Life, and Wireworld.

What is Reso?

  • Reso is a digital logic circuit graphical programming language!
  • Reso is a digital logic circuit simulator.
  • Reso program outputs other Reso programs.
  • Reso is not a cellular automata, despite similarities.
  • Reso is not useful or good yet, but I hope you can still have fun with it.

An input program is a circuit described by a (bitmap) image. When a Reso program is ran through the Reso simulator, it outputs another valid Reso program! Things get interesting when you iterate this process.

While the simulator acts like a pure function, for performance reasons, it maintains state between iterations.

Because images are valid circuits, you can copy-and-paste smaller components to build up more complex circuits using your favorite image editor!

This implementation is (1) slow (it's in Python!) and (2) not-interactive (you can't edit circuits live!) I hope you can have fun with this despite those limitations. :)

Installation

TODO -- I should list the packages and Python version here!

It is recommended to run git clone with flag --depth 1 since the examples, slides, etc. in this repository made it a bit heavy.

Usage

This implementation of Reso supports command line usage. Input is a single image, and outputs are iterations of the Reso simulation of the circuit described in the first image.

Command line

Here's an example: Load ~/helloworld.png, iterate (-n) 12 times, and save (-s) the results to ~/hello_00.png, ~/hello_01.png, ... ~/hello_04.png, printing information verbosely (-v) along the way:

python3 reso.py ~/helloworld.png -n 12 -s hello_ -v

If you only wanted to save the end result, add the "-o" flag, as such:

python3 reso.py ~/helloworld.png -n 12 -s hello_ -v -o

And here is the full command-line usage:

usage: reso.py load_location [--numiter NUMITER] [--save SAVE] [--outputlast] [--verbose]    

positional arguments:
  load_location         Location to load image from

other arguments:
  --save SAVE, -s SAVE  Prefix to save images to.
  --numiter ITERATE, -n ITERATE
                        iterate the reso board n times. Defaults to 1.
  --outputlast, -o      Only save the final iteration of the board.
  --verbose, -v         Print extra information; useful for debugging.

Palette

The palette is an important part of Reso! You can define a circuit using an image. Any pixel with a color in this palette of eight colors has semantic meaning, any other color doesn't.

Color Meaning Hex code
Bright orange Orange wire (on) #ff8000
Dark orange Orange wire (off) #804000
Bright sapphire Sapphire wire (on) #0080ff
Dark sapphire Sapphire wire (off) #004080
Bright lime Lime wire (on) #80ff00
Dark lime Lime wire (off) #408000
Bright purple Output (node to wire) #8000ff
Dark purple Input (wire to node) #400080
Bright teal XOR logic node #00ff80
Dark teal AND logic node #008040

For backwards compatibility with new functionality, we reserve a total of 48 colors. (This is by convention and is not enforced by the Reso simulator.)

A brief description of how programs run: Wires push their signals through input nodes. There are three different colors of wire (orange, sapphire, and lime). Input nodes pass these signals to logic nodes and output nodes. Logic nodes are used to calculate the 'AND' or 'XOR' of every input signal, and push these on to output nodes. The output nodes act as one big OR gate, pushing the new signals out to wires.

The colors of different wires don't have any significance. They exist to make it easier to wire in 2D space, and to make it easier to keep track of which wire is which.

Here's the full palette of colors that we consider "reserved". Other colors are 'whitespace', i.e. will not have any semantic significance.

Hue Saturated (1) Dark (2) Light (3) Unsaturated (4)
Red (R) #ff0000 #800000 #ff8080 #804040
Yellow (Y) #ffff00 #808000 #ffff80 #808040
Green (G) #00ff00 #008000 #80ff80 #408040
Cyan (C) #00ffff #008080 #80ffff #408080
Blue (B) #0000ff #000080 #8080ff #404080
Magenta (M) #ff00ff #800080 #ff80ff #804080
Orange (O) #ff8000 #804000 #ffc080 #806040
Lime (L) #80ff00 #408000 #c0ff80 #608040
Teal (T) #00ff80 #008040 #80ffc0 #408060
Sapphire (S) #0080ff #004080 #80c0ff #406080
Purple (P) #8000ff #400080 #c080ff #604080
Violet (V) #ff0080 #800040 #ff80c0 #804060

(Note: Don't sample directly from your web-browser! They don't always render colors reliably.)

Examples

The Reso logo is actually a complete circuit in-and-of itself! Here is a small gif that explains what's going on, animated at 1/4th the speed (that is, one update every 2000ms):

This is Reso gif

Things to be done:

Despite all the tests and documentation, Reso is a proof-of-concept and there's a lot to be done before this could even be a little useful!

Here are some neat ideas:

Flag to map to nearby colors: I've been having a weird issue with some versions of The GIMP, where colors are saved or picked incorrectly. Reso requires precise colors (e.g. #ff8000 is a valid color but #ff8800 is not.) Perhaps a flag to consider only the ~4 or so most-significant-bits per pixel, or to map colors within a certain range to their nearest one in the palette, would be useful?

Export to GIF option: Self explanatory! No more fiddling with GIMP or ffmpeg.

Transferrable compiled graphs: Reso is really a graph computation model of a logical circuit, and images are a way to define that graph. I want to better decouple that model, and make this a repository a better reference implementation.

Specifically, we consider pixels to represent logical "resels" which can also be represented textually, and regions of resels represent elements, which are represented internally as a graph implemented with Python dictionaries. But this graph isn't a standard, so a compiled graph can't be transferred between implementations.

GUI and interactivity: Some kind of GUI would be nifty too, rather than requiring expertise in some external graphical application. An interactive, Javascript webpage would make this a lot easier to mess around with, huh?

Speed: This is also really slow. Might reimplement in Rust when I get around to learning it!

Port to a faster language: Porting this to a faster language would be great. I think Rust would be fun (both because I want to learn it, and because there's some "Web Assembly" thing that makes me think it's easier to put Rust in the web than, say, C or C++.)

See Also

Here are a list of similar projects that I am aware of. Please make an issue or PR if you have something else to share!

  • Several sandbox videogames which have turing-complete circuit languages that empower the player to automate their world:
    • Minecraft's Redstone was the primary inspiration for this.
    • Terraria (Minecraft's 2D analogue) has a similar logic-gate wiring mechanism.
    • Hempuli is one of my favorite game devs, and seeing their development on Baba Is You kept my brain on the right track for this.
    • Various other open-world sandbox games: Factorio, No Man's Sky, Dwarf Fortress, and others!
  • Conway's Game of Life -- A Turing-complete zero-player-game. By far the most popular cellular automata. Rest in Peace John Conway.
  • Wireworld -- Another cellular automata in which it is easy to implement logic circuits.
  • Brian's Brain -- A cellular automaton similar to the previous.
  • Bitmap Logic Simulator -- I'm not sure how this works, but check it out! It's a similar idea.
Owner
Lynn
PhD student at UConn, they/them. I'm more active on GitLab: gitlab.com/lynnpepin
Lynn
Demo repository for Saltconf21 talk - Testing strategies for Salt states

Saltconf21 testing strategies Demonstration repository for my Saltconf21 talk "Strategies for testing Salt states" Talk recording Slides and demos Get

Barney Sowood 3 Mar 31, 2022
Release for Improved Denoising Diffusion Probabilistic Models

improved-diffusion This is the codebase for Improved Denoising Diffusion Probabilistic Models. Usage This section of the README walks through how to t

OpenAI 1.2k Dec 30, 2022
With Christmas and New Year ahead, it is time for some festive coding. Here is a Christmas Card for you all!

Christmas Card With Christmas and New Year ahead, it is time for some festive coding! Here is a Christmas Card for you all! NOTE: I have not made this

CodeMaster7000 1 Dec 25, 2021
Download and process GOES-16 and GOES-17 data from NOAA's archive on AWS using Python.

Download and display GOES-East and GOES-West data GOES-East and GOES-West satellite data are made available on Amazon Web Services through NOAA's Big

Brian Blaylock 88 Dec 16, 2022
Mines all the moneys and stuff and things.

NFT Miner NFT Miner - Version 1.1.0 - Quick Fix Since the whole NFT thing started booming on Twitter it's been hard not to see one of those ugly ass m

8w8 1 Dec 13, 2021
Calculadora-basica - Calculator with basic operators

Calculadora básica Calculadora com operadores básicos; O programa solicitará a d

Vitor Antoni 2 Apr 26, 2022
TinyBar - Tiny MacOS menu bar utility to track price dynamics for assets on TinyMan.org

📃 About A simple MacOS menu bar app to display current coins from most popular Liquidity Pools on TinyMan.org

Al 8 Dec 23, 2022
Mini-calculadora escrita como exemplo para uma palestra relâmpago sobre `git bisect`

Calculadora Mini-calculadora criada para uma palestra relâmpado sobre git bisect. Tem até uma colinha! Exemplo de uso Modo interativo $ python -m calc

Eduardo Cuducos 3 Dec 14, 2021
Task dispatcher for Postgres

Features a task being ran as an OS process supports task queue with priority and process limit per node fully database driven (a worker and task can b

2 Dec 06, 2021
A chain of stores wants a 3-month demand forecast for its 10 different stores and 50 different products.

Demand Forecasting Objective A chain store wants a machine learning project for a 3-month demand forecast for 10 different stores and 50 different pro

2 Jan 06, 2022
Demo of using DataLoader to prevent out of memory

Demo of using DataLoader to prevent out of memory

3 Jun 25, 2022
Advanced Keylogger in Python

Advanced Keylogger in Python Important Disclaimer: The author will not be held r

Suvanth Erranki 1 Feb 07, 2022
Download and archive entire usenet newsgroups over NNTP.

Usenet Archiving Tool This code is for archiving Usenet discussions, not downloading files. Newsgroup posts are saved under the authors name and email

Corey White 2 Dec 23, 2021
This is a a CSMA/CA simulator written in Python based on simulator of the same type

This is a a CSMA/CA simulator written in Python based on simulator of the same type found the link https://github.com/StevenSLXie/CSMA-Simulator with

M. Ismail 4 Nov 22, 2022
Program Input Nilai Mahasiswa Menggunakan Fungsi

PROGRAM INPUT NILAI MAHASISWA MENGGUNAKAN FUNGSI Nama : Maulana Reza Badrudin Nim : 312110510 Matkul : Bahas Pemograman DESKRIPSI Deklarasi dicti

Maulana Reza Badrudin 1 Jan 05, 2022
An OrpheusDL Tidal module

OrpheusDL - Tidal A Tidal module for the OrpheusDL modular archival music program Report Bug · Request Feature Table of content About OrpheusDL - Tida

Daniel 54 Dec 29, 2022
firefox session recovery

firefox session recovery

Ahmad Sadraei 5 Nov 29, 2022
resultados (data) de elecciones 2021 y código para extraer data de la ONPE

elecciones-peru-2021-ONPE Resultados (data) de elecciones 2021 y código para extraer data de la ONPE Data Licencia liberal, pero si vas a usarlo por f

Ragi Yaser Burhum 21 Jun 14, 2021
Python requirements.txt Guesser

Python-Requirements-Guesser ⚠️ This is alpha quality software. Work in progress Attempt to guess requirements.txt modules versions based on Git histor

Jerome 9 May 24, 2022
Using graph_nets for pion classification and energy regression. Contributions from LLNL and LBNL

nbdev template Use this template to more easily create your nbdev project. If you are using an older version of this template, and want to upgrade to

3 Nov 23, 2022