πŸš€ An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

Overview

Creating an End-to-End ML Application w/ PyTorch

πŸš€ This project was created using the Made With ML boilerplate template. Check it out to start creating your own ML applications.

Overview

  • Why do we need to build end-to-end applications?
    • By building e2e applications, you ensure that your code is organized, tested, testable / interactive and easy to scale-up / assimilate with larger pipelines.
    • If you're someone in industry and are looking to showcase your work to future employers, it's no longer enough to just have code on Jupyter notebooks. ML is just another tool and you need to show that you can use it in conjunction with all the other software engineering disciplines (frontend, backend, devops, etc.). The perfect way to do this is to create end-to-end applications that utilize all these different facets.
  • What are the components of an end-to-end ML application?
    1. Basic experimentation in Jupyter notebooks.
      • We aren't going to completely dismiss notebooks because they're still great tool to iterate quickly. Check out the notebook for our task here β†’ notebook
    2. Moving our code from notebooks to organized scripts.
      • Once we did some basic development (on downsized datasets), we want to move our code to scripts to reduce technical debt. We'll create functions and classes for different parts of the pipeline (data, model, train, etc.) so we can easily make them robust for different circumstances.
      • We used our own boilerplate to organize our code before moving any of the code from our notebook.
    3. Proper logging and testing for you code.
      • Log key events (preprocessing, training performance, etc.) using the built-in logging library. Also use logging to see new inputs and outputs during prediction to catch issues, etc.
      • You also need to properly test your code. You will add and update your functions and their tests over time but it's important to at least start testing crucial pieces of your code from the beginning. These typically include sanity checks with preprocessing and modeling functions to catch issues early. There are many options for testing Python code but we'll use pytest here.
    4. Experiment tracking.
      • We use Weights and Biases (WandB), where you can easily track all the metrics of your experiment, config files, performance details, etc. for free. Check out the Dashboards page for an overview and tutorials.
      • When you're developing your models, start with simple approaches first and then slowly add complexity. You should clearly document (README, articles and WandB reports) and save your progression from simple to more complex models so your audience can see the improvements. The ability to write well and document your thinking process is a core skill to have in research and industry.
      • WandB also has free tools for hyperparameter tuning (Sweeps) and for data/pipeline/model management (Artifacts).
    5. Robust prediction pipelines.
      • When you actually deploy an ML application for the real world to use, we don't just look at the softmax scores.
      • Before even doing any forward pass, we need to analyze the input and deem if it's within the manifold of the training data. If it's something new (or adversarial) we shouldn't send it down the ML pipeline because the results cannot be trusted.
      • During processes like proprocessing, we need to constantly observe what the model received. For example, if the input has a bunch of unknown tokens than we need to flag the prediction because it may not be reliable.
      • After the forward pass we need to do tests on the model's output as well. If the predicted class has a mediocre test set performance, then we need the class probability to be above some critical threshold. Similarly we can relax the threshold for classes where we do exceptionally well.
    6. Wrap your model as an API.
      • Now we start to modularize larger operations (single/batch predict, get experiment details, etc.) so others can use our application without having to execute granular code. There are many options for this like Flask, Django, FastAPI, etc. but we'll use FastAPI for the ease and performance boost.
      • We can also use a Dockerfile to create a Docker image that runs our API. This is a great way to package our entire application to scale it (horizontally and vertically) depending on requirements and usage.
    7. Create an interactive frontend for your application.
      • The best way to showcase your work is to let others easily play with it. We'll be using Streamlit to very quickly create an interactive medium for our application and use Heroku to serve it (1000 hours of usage per month).
      • This is also a great skill to have because in industry you'll need to create this to show key stakeholders and great to have in documentation as well.

Set up

virtualenv -p python3.6 venv
source venv/bin/activate
pip install -r requirements.txt
pip install torch==1.4.0

Download embeddings

python text_classification/utils.py

Training

python text_classification/train.py \
    --data-url https://raw.githubusercontent.com/madewithml/lessons/master/data/news.csv --lower --shuffle --use-glove

Endpoints

uvicorn text_classification.app:app --host 0.0.0.0 --port 5000 --reload
GOTO: http://localhost:5000/docs

Prediction

Scripts

python text_classification/predict.py --text 'The Canadian government officials proposed the new federal law.'

cURL

curl "http://localhost:5000/predict" \
    -X POST -H "Content-Type: application/json" \
    -d '{
            "inputs":[
                {
                    "text":"The Wimbledon tennis tournament starts next week!"
                },
                {
                    "text":"The Canadian government officials proposed the new federal law."
                }
            ]
        }' | json_pp

Requests

import json
import requests

headers = {
    'Content-Type': 'application/json',
}

data = {
    "experiment_id": "latest",
    "inputs": [
        {
            "text": "The Wimbledon tennis tournament starts next week!"
        },
        {
            "text": "The Canadian minister signed in the new federal law."
        }
    ]
}

response = requests.post('http://0.0.0.0:5000/predict',
                         headers=headers, data=json.dumps(data))
results = json.loads(response.text)
print (json.dumps(results, indent=2, sort_keys=False))

Streamlit

streamlit run text_classification/streamlit.py
GOTO: http://localhost:8501

Tests

pytest

Docker

  1. Build image
docker build -t text-classification:latest -f Dockerfile .
  1. Run container
docker run -d -p 5000:5000 -p 6006:6006 --name text-classification text-classification:latest

Heroku

Set `WANDB_API_KEY` as an environment variable.

Directory structure

text-classification/
β”œβ”€β”€ datasets/                           - datasets
β”œβ”€β”€ logs/                               - directory of log files
|   β”œβ”€β”€ errors/                           - error log
|   └── info/                             - info log
β”œβ”€β”€ tests/                              - unit tests
β”œβ”€β”€ text_classification/                - ml scripts
|   β”œβ”€β”€ app.py                            - app endpoints
|   β”œβ”€β”€ config.py                         - configuration
|   β”œβ”€β”€ data.py                           - data processing
|   β”œβ”€β”€ models.py                         - model architectures
|   β”œβ”€β”€ predict.py                        - prediction script
|   β”œβ”€β”€ streamlit.py                      - streamlit app
|   β”œβ”€β”€ train.py                          - training script
|   └── utils.py                          - load embeddings and utilities
β”œβ”€β”€ wandb/                              - wandb experiment runs
β”œβ”€β”€ .dockerignore                       - files to ignore on docker
β”œβ”€β”€ .gitignore                          - files to ignore on git
β”œβ”€β”€ CODE_OF_CONDUCT.md                  - code of conduct
β”œβ”€β”€ CODEOWNERS                          - code owner assignments
β”œβ”€β”€ CONTRIBUTING.md                     - contributing guidelines
β”œβ”€β”€ Dockerfile                          - dockerfile to containerize app
β”œβ”€β”€ LICENSE                             - license description
β”œβ”€β”€ logging.json                        - logger configuration
β”œβ”€β”€ Procfile                            - process script for Heroku
β”œβ”€β”€ README.md                           - this README
β”œβ”€β”€ requirements.txt                    - requirementss
β”œβ”€β”€ setup.sh                            - streamlit setup for Heroku
└── sweeps.yaml                         - hyperparameter wandb sweeps config

Overfit to small subset

python text_classification/train.py \
    --data-url https://raw.githubusercontent.com/madewithml/lessons/master/data/news.csv --lower --shuffle --data-size 0.1 --num-epochs 3

Experiments

  1. Random, unfrozen, embeddings
python text_classification/train.py \
    --data-url https://raw.githubusercontent.com/madewithml/lessons/master/data/news.csv --lower --shuffle
  1. GloVe, frozen, embeddings
python text_classification/train.py \
    --data-url https://raw.githubusercontent.com/madewithml/lessons/master/data/news.csv --lower --shuffle --use-glove --freeze-embeddings
  1. GloVe, unfrozen, embeddings
python text_classification/train.py \
    --data-url https://raw.githubusercontent.com/madewithml/lessons/master/data/news.csv --lower --shuffle --use-glove

Next steps

End-to-end topics that will be covered in subsequent lessons.

  • Utilizing wrappers like PyTorch Lightning to structure the modeling even more while getting some very useful utility.
  • Data / model version control (Artifacts, DVC, MLFlow, etc.)
  • Experiment tracking options (MLFlow, KubeFlow, WandB, Comet, Neptune, etc)
  • Hyperparameter tuning options (Optuna, Hyperopt, Sweeps)
  • Multi-process data loading
  • Dealing with imbalanced datasets
  • Distributed training for much larger models
  • GitHub actions for automatic testing during commits
  • Prediction fail safe techniques (input analysis, class-specific thresholds, etc.)

Helpful docker commands

β€’ Build image

docker build -t madewithml:latest -f Dockerfile .

β€’ Run container if using CMD ["python", "app.py"] or ENTRYPOINT [ "/bin/sh", "entrypoint.sh"]

docker run -p 5000:5000 --name madewithml madewithml:latest

β€’ Get inside container if using CMD ["/bin/bash"]

docker run -p 5000:5000 -it madewithml /bin/bash

β€’ Run container with mounted volume

docker run -p 5000:5000 -v $PWD:/root/madewithml/ --name madewithml madewithml:latest

β€’ Other flags

-d: detached
-ti: interative terminal

β€’ Clean up

docker stop $(docker ps -a -q)     # stop all containers
docker rm $(docker ps -a -q)       # remove all containers
docker rmi $(docker images -a -q)  # remove all images
Owner
Made With ML
Applied ML Β· MLOps Β· Production
Made With ML
Efficient Multi Collection Style Transfer Using GAN

Proposed a new model that can make style transfer from single style image, and allow to transfer into multiple different styles in a single model.

Zhaozheng Shen 2 Jan 15, 2022
JugLab 33 Dec 30, 2022
[CVPR 2022 Oral] EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation

EPro-PnP EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation In CVPR 2022 (Oral). [paper] Hanshen

εŒζ΅Žε€§ε­¦ζ™Ίθƒ½ζ±½θ½¦η ”η©Άζ‰€η»Όεˆζ„ŸηŸ₯η ”η©Άη»„ ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 842 Jan 04, 2023
Code for "Adversarial attack by dropping information." (ICCV 2021)

AdvDrop Code for "AdvDrop: Adversarial Attack to DNNs by Dropping Information(ICCV 2021)." Human can easily recognize visual objects with lost informa

Ranjie Duan 52 Nov 10, 2022
Simple and ready-to-use tutorials for TensorFlow

TensorFlow World To support maintaining and upgrading this project, please kindly consider Sponsoring the project developer. Any level of support is a

Amirsina Torfi 4.5k Dec 23, 2022
ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection

ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection This repository contains implementation of the

Visual Understanding Lab @ Samsung AI Center Moscow 190 Dec 30, 2022
A few stylization coreML models that I've trained with CreateML

CoreML-StyleTransfer A few stylization coreML models that I've trained with CreateML You can open and use the .mlmodel files in the "models" folder in

Doron Adler 8 Aug 18, 2022
eXPeditious Data Transfer

xpdt: eXPeditious Data Transfer About xpdt is (yet another) language for defining data-types and generating code for serializing and deserializing the

Gianni Tedesco 3 Jan 06, 2022
The VeriNet toolkit for verification of neural networks

VeriNet The VeriNet toolkit is a state-of-the-art sound and complete symbolic interval propagation based toolkit for verification of neural networks.

9 Dec 21, 2022
Prometheus exporter for Cisco Unified Computing System (UCS) Manager

prometheus-ucs-exporter Overview Use metrics from the UCS API to export relevant metrics to Prometheus This repository is a fork of Drew Stinnett's or

Marshall Wace 6 Nov 07, 2022
Efficient and Scalable Physics-Informed Deep Learning and Scientific Machine Learning on top of Tensorflow for multi-worker distributed computing

Notice: Support for Python 3.6 will be dropped in v.0.2.1, please plan accordingly! Efficient and Scalable Physics-Informed Deep Learning Collocation-

tensordiffeq 74 Dec 09, 2022
[Open Source]. The improved version of AnimeGAN. Landscape photos/videos to anime

[Open Source]. The improved version of AnimeGAN. Landscape photos/videos to anime

CC 4.4k Dec 27, 2022
Anomaly detection analysis and labeling tool, specifically for multiple time series (one time series per category)

taganomaly Anomaly detection labeling tool, specifically for multiple time series (one time series per category). Taganomaly is a tool for creating la

Microsoft 272 Dec 17, 2022
Charsiu: A transformer-based phonetic aligner

Charsiu: A transformer-based phonetic aligner [arXiv] Note. This is a preview version. The aligner is under active development. New functions, new lan

jzhu 166 Dec 09, 2022
Predict multi paths to a moving person depending on his trajectory history.

Multi-future Trajectory Prediction The project is about using the Multiverse model to make possible multible-future trajectory prediction for a seen p

Said Gamal 1 Jan 18, 2022
Official Repository for our ICCV2021 paper: Continual Learning on Noisy Data Streams via Self-Purified Replay

Continual Learning on Noisy Data Streams via Self-Purified Replay This repository contains the official PyTorch implementation for our ICCV2021 paper.

Jinseo Jeong 22 Nov 23, 2022
The code release of paper 'Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization' NIPS 2020.

Domain Generalization for Medical Imaging Classification with Linear Dependency Regularization The code release of paper 'Domain Generalization for Me

Yufei Wang 56 Dec 28, 2022
Repository to run object detection on a model trained on an autonomous driving dataset.

Autonomous Driving Object Detection on the Raspberry Pi 4 Description of Repository This repository contains code and instructions to configure the ne

Ethan 51 Nov 17, 2022
This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021.

Open Rule Induction This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021. Abstract Rule

Xingran Chen 16 Nov 14, 2022
Reproducing-BowNet: Learning Representations by Predicting Bags of Visual Words

Reproducing-BowNet Our reproducibility effort based on the 2020 ML Reproducibility Challenge. We are reproducing the results of this CVPR 2020 paper:

6 Mar 16, 2022