๐Ÿš€ An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

Overview

Creating an End-to-End ML Application w/ PyTorch

๐Ÿš€ This project was created using the Made With ML boilerplate template. Check it out to start creating your own ML applications.

Overview

  • Why do we need to build end-to-end applications?
    • By building e2e applications, you ensure that your code is organized, tested, testable / interactive and easy to scale-up / assimilate with larger pipelines.
    • If you're someone in industry and are looking to showcase your work to future employers, it's no longer enough to just have code on Jupyter notebooks. ML is just another tool and you need to show that you can use it in conjunction with all the other software engineering disciplines (frontend, backend, devops, etc.). The perfect way to do this is to create end-to-end applications that utilize all these different facets.
  • What are the components of an end-to-end ML application?
    1. Basic experimentation in Jupyter notebooks.
      • We aren't going to completely dismiss notebooks because they're still great tool to iterate quickly. Check out the notebook for our task here โ†’ notebook
    2. Moving our code from notebooks to organized scripts.
      • Once we did some basic development (on downsized datasets), we want to move our code to scripts to reduce technical debt. We'll create functions and classes for different parts of the pipeline (data, model, train, etc.) so we can easily make them robust for different circumstances.
      • We used our own boilerplate to organize our code before moving any of the code from our notebook.
    3. Proper logging and testing for you code.
      • Log key events (preprocessing, training performance, etc.) using the built-in logging library. Also use logging to see new inputs and outputs during prediction to catch issues, etc.
      • You also need to properly test your code. You will add and update your functions and their tests over time but it's important to at least start testing crucial pieces of your code from the beginning. These typically include sanity checks with preprocessing and modeling functions to catch issues early. There are many options for testing Python code but we'll use pytest here.
    4. Experiment tracking.
      • We use Weights and Biases (WandB), where you can easily track all the metrics of your experiment, config files, performance details, etc. for free. Check out the Dashboards page for an overview and tutorials.
      • When you're developing your models, start with simple approaches first and then slowly add complexity. You should clearly document (README, articles and WandB reports) and save your progression from simple to more complex models so your audience can see the improvements. The ability to write well and document your thinking process is a core skill to have in research and industry.
      • WandB also has free tools for hyperparameter tuning (Sweeps) and for data/pipeline/model management (Artifacts).
    5. Robust prediction pipelines.
      • When you actually deploy an ML application for the real world to use, we don't just look at the softmax scores.
      • Before even doing any forward pass, we need to analyze the input and deem if it's within the manifold of the training data. If it's something new (or adversarial) we shouldn't send it down the ML pipeline because the results cannot be trusted.
      • During processes like proprocessing, we need to constantly observe what the model received. For example, if the input has a bunch of unknown tokens than we need to flag the prediction because it may not be reliable.
      • After the forward pass we need to do tests on the model's output as well. If the predicted class has a mediocre test set performance, then we need the class probability to be above some critical threshold. Similarly we can relax the threshold for classes where we do exceptionally well.
    6. Wrap your model as an API.
      • Now we start to modularize larger operations (single/batch predict, get experiment details, etc.) so others can use our application without having to execute granular code. There are many options for this like Flask, Django, FastAPI, etc. but we'll use FastAPI for the ease and performance boost.
      • We can also use a Dockerfile to create a Docker image that runs our API. This is a great way to package our entire application to scale it (horizontally and vertically) depending on requirements and usage.
    7. Create an interactive frontend for your application.
      • The best way to showcase your work is to let others easily play with it. We'll be using Streamlit to very quickly create an interactive medium for our application and use Heroku to serve it (1000 hours of usage per month).
      • This is also a great skill to have because in industry you'll need to create this to show key stakeholders and great to have in documentation as well.

Set up

virtualenv -p python3.6 venv
source venv/bin/activate
pip install -r requirements.txt
pip install torch==1.4.0

Download embeddings

python text_classification/utils.py

Training

python text_classification/train.py \
    --data-url https://raw.githubusercontent.com/madewithml/lessons/master/data/news.csv --lower --shuffle --use-glove

Endpoints

uvicorn text_classification.app:app --host 0.0.0.0 --port 5000 --reload
GOTO: http://localhost:5000/docs

Prediction

Scripts

python text_classification/predict.py --text 'The Canadian government officials proposed the new federal law.'

cURL

curl "http://localhost:5000/predict" \
    -X POST -H "Content-Type: application/json" \
    -d '{
            "inputs":[
                {
                    "text":"The Wimbledon tennis tournament starts next week!"
                },
                {
                    "text":"The Canadian government officials proposed the new federal law."
                }
            ]
        }' | json_pp

Requests

import json
import requests

headers = {
    'Content-Type': 'application/json',
}

data = {
    "experiment_id": "latest",
    "inputs": [
        {
            "text": "The Wimbledon tennis tournament starts next week!"
        },
        {
            "text": "The Canadian minister signed in the new federal law."
        }
    ]
}

response = requests.post('http://0.0.0.0:5000/predict',
                         headers=headers, data=json.dumps(data))
results = json.loads(response.text)
print (json.dumps(results, indent=2, sort_keys=False))

Streamlit

streamlit run text_classification/streamlit.py
GOTO: http://localhost:8501

Tests

pytest

Docker

  1. Build image
docker build -t text-classification:latest -f Dockerfile .
  1. Run container
docker run -d -p 5000:5000 -p 6006:6006 --name text-classification text-classification:latest

Heroku

Set `WANDB_API_KEY` as an environment variable.

Directory structure

text-classification/
โ”œโ”€โ”€ datasets/                           - datasets
โ”œโ”€โ”€ logs/                               - directory of log files
|   โ”œโ”€โ”€ errors/                           - error log
|   โ””โ”€โ”€ info/                             - info log
โ”œโ”€โ”€ tests/                              - unit tests
โ”œโ”€โ”€ text_classification/                - ml scripts
|   โ”œโ”€โ”€ app.py                            - app endpoints
|   โ”œโ”€โ”€ config.py                         - configuration
|   โ”œโ”€โ”€ data.py                           - data processing
|   โ”œโ”€โ”€ models.py                         - model architectures
|   โ”œโ”€โ”€ predict.py                        - prediction script
|   โ”œโ”€โ”€ streamlit.py                      - streamlit app
|   โ”œโ”€โ”€ train.py                          - training script
|   โ””โ”€โ”€ utils.py                          - load embeddings and utilities
โ”œโ”€โ”€ wandb/                              - wandb experiment runs
โ”œโ”€โ”€ .dockerignore                       - files to ignore on docker
โ”œโ”€โ”€ .gitignore                          - files to ignore on git
โ”œโ”€โ”€ CODE_OF_CONDUCT.md                  - code of conduct
โ”œโ”€โ”€ CODEOWNERS                          - code owner assignments
โ”œโ”€โ”€ CONTRIBUTING.md                     - contributing guidelines
โ”œโ”€โ”€ Dockerfile                          - dockerfile to containerize app
โ”œโ”€โ”€ LICENSE                             - license description
โ”œโ”€โ”€ logging.json                        - logger configuration
โ”œโ”€โ”€ Procfile                            - process script for Heroku
โ”œโ”€โ”€ README.md                           - this README
โ”œโ”€โ”€ requirements.txt                    - requirementss
โ”œโ”€โ”€ setup.sh                            - streamlit setup for Heroku
โ””โ”€โ”€ sweeps.yaml                         - hyperparameter wandb sweeps config

Overfit to small subset

python text_classification/train.py \
    --data-url https://raw.githubusercontent.com/madewithml/lessons/master/data/news.csv --lower --shuffle --data-size 0.1 --num-epochs 3

Experiments

  1. Random, unfrozen, embeddings
python text_classification/train.py \
    --data-url https://raw.githubusercontent.com/madewithml/lessons/master/data/news.csv --lower --shuffle
  1. GloVe, frozen, embeddings
python text_classification/train.py \
    --data-url https://raw.githubusercontent.com/madewithml/lessons/master/data/news.csv --lower --shuffle --use-glove --freeze-embeddings
  1. GloVe, unfrozen, embeddings
python text_classification/train.py \
    --data-url https://raw.githubusercontent.com/madewithml/lessons/master/data/news.csv --lower --shuffle --use-glove

Next steps

End-to-end topics that will be covered in subsequent lessons.

  • Utilizing wrappers like PyTorch Lightning to structure the modeling even more while getting some very useful utility.
  • Data / model version control (Artifacts, DVC, MLFlow, etc.)
  • Experiment tracking options (MLFlow, KubeFlow, WandB, Comet, Neptune, etc)
  • Hyperparameter tuning options (Optuna, Hyperopt, Sweeps)
  • Multi-process data loading
  • Dealing with imbalanced datasets
  • Distributed training for much larger models
  • GitHub actions for automatic testing during commits
  • Prediction fail safe techniques (input analysis, class-specific thresholds, etc.)

Helpful docker commands

โ€ข Build image

docker build -t madewithml:latest -f Dockerfile .

โ€ข Run container if using CMD ["python", "app.py"] or ENTRYPOINT [ "/bin/sh", "entrypoint.sh"]

docker run -p 5000:5000 --name madewithml madewithml:latest

โ€ข Get inside container if using CMD ["/bin/bash"]

docker run -p 5000:5000 -it madewithml /bin/bash

โ€ข Run container with mounted volume

docker run -p 5000:5000 -v $PWD:/root/madewithml/ --name madewithml madewithml:latest

โ€ข Other flags

-d: detached
-ti: interative terminal

โ€ข Clean up

docker stop $(docker ps -a -q)     # stop all containers
docker rm $(docker ps -a -q)       # remove all containers
docker rmi $(docker images -a -q)  # remove all images
Owner
Made With ML
Applied ML ยท MLOps ยท Production
Made With ML
An ever-growing playground of notebooks showcasing CLIP's impressive zero-shot capabilities.

Playground for CLIP-like models Demo Colab Link GradCAM Visualization Naive Zero-shot Detection Smarter Zero-shot Detection Captcha Solver Changelog 2

Kevin Zakka 101 Dec 30, 2022
ACL'2021: LM-BFF: Better Few-shot Fine-tuning of Language Models

LM-BFF (Better Few-shot Fine-tuning of Language Models) This is the implementation of the paper Making Pre-trained Language Models Better Few-shot Lea

Princeton Natural Language Processing 607 Jan 07, 2023
PyBrain - Another Python Machine Learning Library.

PyBrain -- the Python Machine Learning Library =============================================== INSTALLATION ------------ Quick answer: make sure you

2.8k Dec 31, 2022
Galactic and gravitational dynamics in Python

Gala is a Python package for Galactic and gravitational dynamics. Documentation The documentation for Gala is hosted on Read the docs. Installation an

Adrian Price-Whelan 101 Dec 22, 2022
[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore

[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6101 of Semester 1, AY2021-2022, starting from 08/2021. The instructors of

AccSrd 1 Sep 22, 2022
[ACMMM 2021, Oral] Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception"

EIP: Elastic Interaction of Particles Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception", in ACMMM (Oral) 2021. By Yikai

Yikai Wang 37 Dec 20, 2022
This repository introduces a short project about Transfer Learning for Classification of MRI Images.

Transfer Learning for MRI Images Classification This repository introduces a short project made during my stay at Neuromatch Summer School 2021. This

Oscar Guarnizo 3 Nov 15, 2022
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021)

Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021, official Pytorch implementatio

Microsoft 247 Dec 25, 2022
EssentialMC2 Video Understanding

EssentialMC2 Introduction EssentialMC2 is a complete system to solve video understanding tasks including MHRL(representation learning), MECR2( relatio

Alibaba 106 Dec 11, 2022
U-Time: A Fully Convolutional Network for Time Series Segmentation

U-Time & U-Sleep Official implementation of The U-Time [1] model for general-purpose time-series segmentation. The U-Sleep [2] model for resilient hig

Mathias Perslev 176 Dec 19, 2022
Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Support Vector Machine".

On the Equivalence between Neural Network and Support Vector Machine Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Suppo

Leslie 8 Oct 25, 2022
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in

TU Delft 43 Dec 07, 2022
The first dataset on shadow generation for the foreground object in real-world scenes.

Object-Shadow-Generation-Dataset-DESOBA Object Shadow Generation is to deal with the shadow inconsistency between the foreground object and the backgr

BCMI 105 Dec 30, 2022
Code for NeurIPS 2021 paper "Curriculum Offline Imitation Learning"

README The code is based on the ILswiss. To run the code, use python run_experiment.py --nosrun -e your YAML file -g gpu id Generally, run_experim

ApexRL 12 Mar 19, 2022
PyTorch implementation of our CVPR2021 (oral) paper "Prototype Augmentation and Self-Supervision for Incremental Learning"

PASS - Official PyTorch Implementation [CVPR2021 Oral] Prototype Augmentation and Self-Supervision for Incremental Learning Fei Zhu, Xu-Yao Zhang, Chu

67 Dec 27, 2022
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
Unsupervised Feature Ranking via Attribute Networks.

FRANe Unsupervised Feature Ranking via Attribute Networks (FRANe) converts a dataset into a network (graph) with nodes that correspond to the features

7 Sep 29, 2022
Self-supervised learning optimally robust representations for domain generalization.

OptDom: Learning Optimal Representations for Domain Generalization This repository contains the official implementation for Optimal Representations fo

Yangjun Ruan 18 Aug 25, 2022
MLSpace: Hassle-free machine learning & deep learning development

MLSpace: Hassle-free machine learning & deep learning development

abhishek thakur 293 Jan 03, 2023
Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging

Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging This repository contains an implementation

Computational Photography Lab @ SFU 1.1k Jan 02, 2023