Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Overview

Semi-Supervised Raw-to-Raw Mapping

Mahmoud Afifi and Abdullah Abuolaim

York University

Project page of the paper Semi-Supervised Raw-to-Raw Mapping. Mahmoud Afifi and Abdullah Abuolaim. arXiv preprint arXiv:2106.13883, 2021. If you use this code, please cite our paper:

@article{afifi2021raw2raw,
  title={Semi-Supervised Raw-to-Raw Mapping},
  author={Afifi, Mahmoud and Abuolaim, Abdullah},
  journal={arXiv preprint arXiv:2106.13883},
  year={2021}
}

teaser

Abstract

The raw-RGB colors of a camera sensor vary due to the spectral sensitivity differences across different sensor makes and models. This paper focuses on the task of mapping between different sensor raw-RGB color spaces. Prior work addressed this problem using a pairwise calibration to achieve accurate color mapping. Although being accurate, this approach is less practical as it requires: (1) capturing pair of images by both camera devices with a color calibration object placed in each new scene; (2) accurate image alignment or manual annotation of the color calibration object. This paper aims to tackle color mapping in the raw space through a more practical setup. Specifically, we present a semi-supervised raw-to-raw mapping method trained on a small set of paired images alongside an unpaired set of images captured by each camera device. Through extensive experiments, we show that our method achieves better results compared to other domain adaptation alternatives in addition to the single-calibration solution. We have generated a new dataset of raw images from two different smartphone cameras as part of this effort. Our dataset includes unpaired and paired sets for our semi-supervised training and evaluation.

main

Dataset

Our dataset consists of an unpaired and paired set of images captured by two different smartphone cameras: Samsung Galaxy S9 and iPhone X. The unpaired set includes 196 images captured by each smartphone camera (total of 392). The paired set includes 115 pair of images used for testing. In addition to this paired set, we have another small set of 22 anchor paired images. See our paper for more details.

dataset_examples

To download the dataset, please first download the DNG files, associated metadata, and pre-computed mapping from the following link.

Then, run raw_extraction.py code. Note that the code need sthe following libs to be installed: scipy, cv2, rawpy, and numpy. Make sure that the dataset is located in the root in dataset directory as follows:

- root/
      dataset/
             paired/
             unpaired/

The code will generate raw-rggb and vis directory (inside each subdirectory for each camera) that include RGGB and RGB images, respectively. Note that the vis directory (that includes RGB images) is for visualization as these images are gamma compressed and saved in JPG format. For the paired set, the code will generate raw-rggb and anchor-raw-rggb for testing and anchor sets, respectively.

MIT License

Owner
Mahmoud Afifi
Ph.D. in computer science
Mahmoud Afifi
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
Automatically erase objects in the video, such as logo, text, etc.

Video-Auto-Wipe Read English Introduction:Here   本人不定期的基于生成技术制作一些好玩有趣的算法模型,这次带来的作品是“视频擦除”方向的应用模型,它实现的功能是自动感知到视频中我们不想看见的部分(譬如广告、水印、字幕、图标等等)然后进行擦除。由于图标擦

seeprettyface.com 141 Dec 26, 2022
X-VLM: Multi-Grained Vision Language Pre-Training

X-VLM: learning multi-grained vision language alignments Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts. Yan Zeng, Xi

Yan Zeng 286 Dec 23, 2022
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng

NVIDIA Research Projects 45 Dec 26, 2022
Concept drift monitoring for HA model servers.

{Fast, Correct, Simple} - pick three Easily compare training and production ML data & model distributions Goals Boxkite is an instrumentation library

98 Dec 15, 2022
Simple, efficient and flexible vision toolbox for mxnet framework.

MXbox: Simple, efficient and flexible vision toolbox for mxnet framework. MXbox is a toolbox aiming to provide a general and simple interface for visi

Ligeng Zhu 31 Oct 19, 2019
Spherical CNNs

Spherical CNNs Equivariant CNNs for the sphere and SO(3) implemented in PyTorch Overview This library contains a PyTorch implementation of the rotatio

Jonas Köhler 893 Dec 28, 2022
Official pytorch implementation of Rainbow Memory (CVPR 2021)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

Clova AI Research 91 Dec 17, 2022
Provide baselines and evaluation metrics of the task: traffic flow prediction

Note: This repo is adpoted from https://github.com/UNIMIBInside/Smart-Mobility-Prediction. Due to technical reasons, I did not fork their code. Introd

Zhangzhi Peng 11 Nov 02, 2022
(CVPR 2022 Oral) Official implementation for "Surface Representation for Point Clouds"

RepSurf - Surface Representation for Point Clouds [CVPR 2022 Oral] By Haoxi Ran* , Jun Liu, Chengjie Wang ( * : corresponding contact) The pytorch off

Haoxi Ran 264 Dec 23, 2022
Barbershop: GAN-based Image Compositing using Segmentation Masks (SIGGRAPH Asia 2021)

Barbershop: GAN-based Image Compositing using Segmentation Masks Barbershop: GAN-based Image Compositing using Segmentation Masks Peihao Zhu, Rameen A

Peihao Zhu 928 Dec 30, 2022
UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus General info This is

71 Oct 25, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
NPBG++: Accelerating Neural Point-Based Graphics

[CVPR 2022] NPBG++: Accelerating Neural Point-Based Graphics Project Page | Paper This repository contains the official Python implementation of the p

Ruslan Rakhimov 57 Dec 03, 2022
RetinaFace: Deep Face Detection Library in TensorFlow for Python

RetinaFace is a deep learning based cutting-edge facial detector for Python coming with facial landmarks.

Sefik Ilkin Serengil 512 Dec 29, 2022
Unofficial PyTorch Implementation for HifiFace (https://arxiv.org/abs/2106.09965)

HifiFace — Unofficial Pytorch Implementation Image source: HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping (figure 1, pg. 1)

MINDs Lab 218 Jan 04, 2023
The official implementation of the IEEE S&P`22 paper "SoK: How Robust is Deep Neural Network Image Classification Watermarking".

Watermark-Robustness-Toolbox - Official PyTorch Implementation This repository contains the official PyTorch implementation of the following paper to

49 Dec 19, 2022
Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

Zhichun Guo 94 Dec 12, 2022
Active learning for Mask R-CNN in Detectron2

MaskAL - Active learning for Mask R-CNN in Detectron2 Summary MaskAL is an active learning framework that automatically selects the most-informative i

49 Dec 20, 2022
Dynamic Capacity Networks using Tensorflow

Dynamic Capacity Networks using Tensorflow Dynamic Capacity Networks (DCN; http://arxiv.org/abs/1511.07838) implementation using Tensorflow. DCN reduc

Taeksoo Kim 8 Feb 23, 2021