This is the antenna performance plotted from tinyGS reception data.

Overview

tinyGS-antenna-map

This is the antenna performance plotted from tinyGS reception data. See their repository.

The code produces a plot that provides Azimuth and Elevation information showing the location in the sky, based on the observer/station, where the satellite reception is successful and packets are uploaded to TinyGS.

My four active stations show very different reception patterns. These are a 433Mhz vertical 1/4 wave antenna, a 433Mhz vertical dipole, a 433Mhz horizontal dipole, and a 1/4 wave 915 Mhz antenna (that has received nothing useful as there aren't any satellites presently transmitting). All are on the East side of the house and somewhat blocked towards the West.

W6LHI

Darker quadrants mean more reception. Individual packets received are the black dots. Packets received with CRC Errors are shown as red dots.

The center of the circle is exactly vertical from the observer/station. The edge of the circle is the horizon (well, kinda!).

For example, if you operate with a simple horizontal dipole, then you would see a bias in the data towards the higher reception direction (90 degrees from the dipole length). If you have a Al/Ez tracking antenna then you should see a very broad reception map.

The program will display the plot on the desktop if it is run in that environment. If you want a CLI process, then look at the -o flag below. The program uses Matplotlib and the install instructions are included - follow them carefully. All instructions are for Debian (and tested on a R.Pi). This code should work on other systems. Any problems? - please use GitHub issues.

Install

Download and install code from GitHub

The best copy of this code is always on GitHub. If you need the git command (and you will) do this part first:

$ sudo apt-get install -y git
...
$

Grab the code via this:

$ git clone https://github.com/mahtin/tinyGS-antenna-map.git
...
$ cd tinyGS-antenna-map
$

Installing required packages (i.e Matplotlib)

Please read and follow the INSTALL-MATPLOTLIB page. Then return here after that is finished.

Install continued

Once Matplotlib is install cleanly the code requires some additional packages/libraries:

$ sudo python3 -m pip install -U -r requirements.txt
...
$

Now the install is finished. Congratulations.

Setting up your user-id

To plot your own graphs from your own stations, you need to know what your own user-id on TinyGS is. The first option is to save it away in a file for all the code to use.

Storing your user-id

Your user-is can be found via various methods.

Assuming you are logged into TinyGS, you can visit https://tinygs.com and click on the User Console icon and then look at the resulting station URL (it will be something like: https://tinygs.com/user/20000007). The same user-id number can be seen in the URL for the per-station page.

user-id

Or, you can use your Telegram TinyGS Personal Bot channel to find your user-id. It's the last number from the passwordless login link you get with the /weblogin command.

user-id

The user-id is the URL provided (see example image).

Copy the number seens and use it to create a .user_id file via the following command:

$ echo '20000007' > .user_id
$

Your number will be different.

Specifying user for each run

If you choose, you specify your user-id manually on each command run. See the -u option below.

Plotting your antenna map

All your stations will be plotted on a single page. Make the displayed page larger if you need.

$ ./tinygs_antenna_map.py

This assumes that you are on a machine with a display. If you are headless, then the following will be useful:

$ ./tinygs_antenna_map.py -o > pretty-graph.png
$ scp pretty-graph.png somewhere-else.example.com:

If Matplotlib sends out warning messages about Connection Refused or Gdk-CRITICAL, it's because you can't connect to the display (even if you are trying to write an image file). This still produces an image. You can fix this by setting the MPLBACKEND environment variable (see Matplotlib builtin backends instructions):

$ MPLBACKEND=Agg ./tinygs_antenna_map.py -o > pretty-graph.png
...
$

tinygs_antenna_map.py options

The tinygs_antenna_map.py program takes various arguments.

tinygs_antenna_map [-v|--verbose] [-h|--help] [-r|--refresh] [-s|--station[,station...]] [-u|--user] user-id]
  • [-v|--verbose] - provide some information on each of the packets being processed/displayed.
  • [-h|--help] - this message.
  • [-r|--refresh] - presently unused; but will pull data from TinyGS site on demand.
  • [-s|--station[,station...]] - list the station or stations to plot. Use comma-seperated (i.e. A,B,C) for more than one station.
  • [-u|--user] user-id] - define the user-id vs using the .user_id file.
  • [-o|--output] - produce a PNG file on stdout (use: tinygs_antenna_map.py -o > diagram.png for example`).

Specifying the station or user-id

To produce a plot for a specific user (for example 20000007):

$ ./tinygs_antenna_map.py -u 20000007

Your number will be different.

To produce a plot for one of your specific stations, use the station name:

$ ./tinygs_antenna_map.py -s W6LHI_433Mhz

To produce a plot for someone else station (and I'm not judging you in anyway):

$ ./tinygs_antenna_map.py -s MALAONE -u 0

(No idea who MALAONE is). Note the -u 0 argument. This overtides your .user_id file if it exists (as this station is a different user).

Data refresh

The program can be run many times; however it will only collect new data from TinyGS API no-and-again. This is to reduce the load on their servers.

  • Packet data is updated at-best every twelve hours
  • Station data is updated at-best every five days
  • TLE data is updated at-best every two days

Should you want to force a data refresh, then use the -r flag. Don't blame me if you get banned from the site.

$ ./tinygs_antenna_map.py -r

I don't recommend using that flag.

Adding antenna direction graphics to the plot(s)

If you want to superimpose an antenna direction on the graphs; use the following examples:

An simple antenna direction for all ploted stations:

$ ./tinygs_antenna_map.py -a 220

An antenna direction for a specific ploted station:

$ ./tinygs_antenna_map.py -a [email protected]_433Mhz

An antenna direction for more than one ploted station:

$ ./tinygs_antenna_map.py -a [email protected]_433Mhz,[email protected]_433Mhz_2

The numbers are in degress and the comma seperated list must contain valid station names.

Owner
Martin J. Levy
Roaming the planet; one packet at a time! PGP: 7EA1 39C4 0C1C 842F 9D41 AAF9 4A34 925D 0517 2859 Ham operator: W6lHI/G8LHI
Martin J. Levy
Django model field that can hold a geoposition, and corresponding widget

django-geoposition A model field that can hold a geoposition (latitude/longitude), and corresponding admin/form widget. Prerequisites Starting with ve

Philipp Bosch 324 Oct 17, 2022
Pure Python NetCDF file reader and writer

Pyncf Pure Python NetCDF file reading and writing. Introduction Inspired by the pyshp library, which provides simple pythonic and dependency free data

Karim Bahgat 14 Sep 30, 2022
EOReader is a multi-satellite reader allowing you to open optical and SAR data.

Remote-sensing opensource python library reading optical and SAR sensors, loading and stacking bands, clouds, DEM and index.

ICube-SERTIT 152 Dec 30, 2022
Calculate the area inside of any GeoJSON geometry. This is a port of Mapbox's geojson-area for Python

geojson-area Calculate the area inside of any GeoJSON geometry. This is a port of Mapbox's geojson-area for Python. Installation $ pip install area U

Alireza 87 Dec 14, 2022
Using SQLAlchemy with spatial databases

GeoAlchemy GIS Support for SQLAlchemy. Introduction GeoAlchemy is an extension of SQLAlchemy. It provides support for Geospatial data types at the ORM

109 Dec 01, 2022
Focal Statistics

Focal-Statistics The Focal statistics tool in many GIS applications like ArcGIS, QGIS and GRASS GIS is a standard method to gain a local overview of r

Ifeanyi Nwasolu 1 Oct 21, 2021
A multi-page streamlit app for the geospatial community.

A multi-page streamlit app for the geospatial community.

Qiusheng Wu 522 Dec 30, 2022
WIP: extracting Geometry utilities from datacube-core

odc.geo This is still work in progress. This repository contains geometry related code extracted from Open Datacube. For details and motivation see OD

Open Data Cube 34 Jan 09, 2023
Implementation of Trajectory classes and functions built on top of GeoPandas

MovingPandas MovingPandas implements a Trajectory class and corresponding methods based on GeoPandas. Visit movingpandas.org for details! You can run

Anita Graser 897 Jan 01, 2023
Simple CLI for Google Earth Engine Uploads

geeup: Simple CLI for Earth Engine Uploads with Selenium Support This tool came of the simple need to handle batch uploads of both image assets to col

Samapriya Roy 79 Nov 26, 2022
Xarray backend to Copernicus Sentinel-1 satellite data products

xarray-sentinel WARNING: this product is a "technology preview" / pre-Alpha Xarray backend to explore and load Copernicus Sentinel-1 satellite data pr

B-Open 191 Dec 15, 2022
Manage your XYZ Hub or HERE Data Hub spaces from Python.

XYZ Spaces for Python Manage your XYZ Hub or HERE Data Hub spaces and Interactive Map Layer from Python. FEATURED IN: Online Python Machine Learning C

HERE Technologies 30 Oct 18, 2022
🌐 Local tile server for viewing geospatial raster files with ipyleaflet

🌐 Local Tile Server for Geospatial Rasters Need to visualize a rather large raster (gigabytes) you have locally? This is for you. A Flask application

Bane Sullivan 192 Jan 04, 2023
Zora is a python program that searches for GeoLocation info for given CIDR networks , with options to search with API or without API

Zora Zora is a python program that searches for GeoLocation info for given CIDR networks , with options to search with API or without API Installing a

z3r0day 1 Oct 26, 2021
Stitch image tiles into larger composite TIFs

untiler Utility to take a directory of {z}/{x}/{y}.(jpg|png) tiles, and stitch into a scenetiff (tif w/ exact merc tile bounds). Future versions will

Mapbox 38 Dec 16, 2022
A light-weight, versatile XYZ tile server, built with Flask and Rasterio :earth_africa:

Terracotta is a pure Python tile server that runs as a WSGI app on a dedicated webserver or as a serverless app on AWS Lambda. It is built on a modern

DHI GRAS 531 Dec 28, 2022
Python bindings and utilities for GeoJSON

geojson This Python library contains: Functions for encoding and decoding GeoJSON formatted data Classes for all GeoJSON Objects An implementation of

Jazzband 765 Jan 06, 2023
geobeam - adds GIS capabilities to your Apache Beam and Dataflow pipelines.

geobeam adds GIS capabilities to your Apache Beam pipelines. What does geobeam do? geobeam enables you to ingest and analyze massive amounts of geospa

Google Cloud Platform 61 Nov 08, 2022
Python Data. Leaflet.js Maps.

folium Python Data, Leaflet.js Maps folium builds on the data wrangling strengths of the Python ecosystem and the mapping strengths of the Leaflet.js

6k Jan 02, 2023
A Python framework for building geospatial web-applications

Hey there, this is Greppo... A Python framework for building geospatial web-applications. Greppo is an open-source Python framework that makes it easy

Greppo 304 Dec 27, 2022