A visualisation tool for Deep Reinforcement Learning

Related tags

Deep Learningdrlvis
Overview

DRLVIS - Visualising Deep Reinforcement Learning


Created by Marios Sirtmatsis with the support of Alex Bäuerle.

DRLVis is an application used for visualising deep reinforcement learning. The goal is to enable developers to get a further understanding of broadly used algorithms across the deep reinforcement learning landscape. Also DRLVis shall provide a tool for researchers and developers to help them understand errors in their implemented algorithms.

Installation

  1. Install the drlvis pip package by using the following command pip install -e drlvis from the directory above the drlvis directory
  2. After that simply run drlvis --logdir @PATH_TO_LOGDIR
  3. Open your browser on http://localhost:8000

Implementation

Architecture

The application is split into a backend and a fronted, where the backend does most of the data preprocessing. The frontend provides meaningful visualisations for further understanding of what the agent is doing, how rewards, weights and actions develop over time and how confident the agent is in selecting its actions.

Workflow for using DRLVis

  1. Train agent and log data
  2. Run drlvis
  3. Interpret meaningful visualisations in your browser

Logging

Logging for the use of drlvis is done by logger.py. The file contains a documentation on which values should be passed for logging. Thlogger.py contains an individual function for every loggable value/values. Some (the most important) of these functions are:


def create_logger(logdir)

The create_logger() function has to be used for initializing the logger and specifying the target destination of the logging directory. It is always important, that the logdir either does not exist yet or is an empty directory.


def log_episode_return(episode_return, episode_count)

With log_episode_return() one is able to log the accumulated reward per episode, with the step being the curresponding current episode count.


def log_action_divergence(action_probs, action_probs_old, episode_count, apply_softmax )

With log_action_divergence() one can calculate the divergence between actions in the current episode and actions in the last episode. Therefore the action_probabilities for each observation per timestep in an episode has to be collected. In the end of an episode this collection of action probabilites and the collection from the episode before can be passed to the log_action_divergence() method, which then calculates the kl divergence between action probabilities of the last episode and the current episode. Example code snippet with a model with softmax activation in the last layer:


def log_frame(frame, episode_count, step)

Using log_frame() one can log the frame which is currently being observed, or which corresponds with the current timestep. The episode count is the current episode and the step is the timestep within the episode on which the frame is being observed or corresponds with.


from drlvis import logger
import numpy as np

probs_curr = []

for episode in range(episode_range):

    for timestep in range(optional_timestep_range):
    
        if end_of_current_episode: #done in openai gym
            if episode >= 1:
                logger.log_action_divergence(probs_old, probs_curr, episode)
            probs_old = probs_curr

        probs_curr.append(model(observation[np.newaxis,:]))

def log_action_probs(predictions, episode_count, step, apply_softmax)

One can use log_action_probs() for logging the predictions of ones model for the currently observed timestep in an episode. If the model does not output probabilites, one can set apply_softmax to True for creating probabilities based on predictions.


def log_experiment_random_states(random_state_samples, predicted_dists, obs_min, obs_max, episode_num, state_meanings, apply_softmax)

The log_experiment_random_states()function takes a highdimensional array containing randomly generated states in bounds of the environments capabilities. (obs_min, obs_max) It also needs the episode in which a random states experiment shall be performed. The function then reduces the dimensions to two dimensions with UMAP for visualisation purposes. The state meanings can be passed for easier environments to reflect what the different states mean. A random state experiment itself is just a method to evaluate the agents confidence in selecting certain actions for randomly generated states. Example code snippet:

from drlvis import logger
import numpy as np

def random_states_experiment(model, episode_num):
   
    obs_space = env.observation_space
    obs_min = obs_space.low
    obs_max = obs_space.high


    num_samples = 10000 # can be an arbitrary number
    random_state_samples = np.random.uniform(
        low=obs_min, high=obs_max, size=(num_samples, len(obs_min)))

    predicted_dists = model(random_state_samples)
   
    logger.log_experiment_random_states(random_state_samples, predicted_dists, obs_min, obs_max, episode_num, [])

def log_action_distribution(actions, episode_count)

The log_action_distribution() function calculates the distribution of actions in the specified episode. Therefore one solely has to pass the actions, which where selected in the current episode episode_count


def log_weights(weight_tensor, step, episode_count)

With log_weights()one can log the weights of the last layer of ones model in a given timestep in an episode. This can be done as follows (model is keras model but not of major importance):

from drlvis import logger

weights = agent.model.weights[-2].numpy()
logger.log_weights(weight_tensor=weights, step=timestep ,episode_count=episode)

Examples

Examples on how to use the logger functions in real DRL implementations can be found in the examples folder that contains simple cartpole implementation in dqn_cartpole.ipynb and a more complex DQN implementation for playing Atari Breakout in dqn/.

Bachelor Thesis

For further information on how to use DRLVis and details about the application, I refer to my bachelor thesis located at documents/bachelor_thesis_visdrl.pdf.

License

MIT

Owner
Marios Sirtmatsis
Marios Sirtmatsis
NVIDIA Deep Learning Examples for Tensor Cores

NVIDIA Deep Learning Examples for Tensor Cores Introduction This repository provides State-of-the-Art Deep Learning examples that are easy to train an

NVIDIA Corporation 10k Dec 31, 2022
🙄 Difficult algorithm, Simple code.

🎉TensorFlow2.0-Examples🎉! "Talk is cheap, show me the code." ----- Linus Torvalds Created by YunYang1994 This tutorial was designed for easily divin

1.7k Dec 25, 2022
tensorflow code for inverse face rendering

InverseFaceRender This is tensorflow code for our project: Learning Inverse Rendering of Faces from Real-world Videos. (https://arxiv.org/abs/2003.120

Yuda Qiu 18 Nov 16, 2022
Pytorch implementation of the unsupervised object discovery method LOST.

LOST Pytorch implementation of the unsupervised object discovery method LOST. More details can be found in the paper: Localizing Objects with Self-Sup

Valeo.ai 189 Dec 25, 2022
Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh

Utkarsh Ojha 251 Dec 11, 2022
ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプル

ByteTrack-ONNX-Sample ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプルです。 ONNXに変換したモデルも同梱しています。 変換自体を試したい方はByteT

KazuhitoTakahashi 16 Oct 26, 2022
Implementation for "Exploiting Aliasing for Manga Restoration" (CVPR 2021)

[CVPR Paper](To appear) | [Project Website](To appear) | BibTex Introduction As a popular entertainment art form, manga enriches the line drawings det

133 Dec 15, 2022
Machine Learning automation and tracking

The Open-Source MLOps Orchestration Framework MLRun is an open-source MLOps framework that offers an integrative approach to managing your machine-lea

873 Jan 04, 2023
Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Detecting Invisible People [ICCV 2021 Paper] [Website] Tarasha Khurana, Achal Dave, Deva Ramanan Introduction This repository contains code for Detect

Tarasha Khurana 28 Sep 16, 2022
Unofficial implementation of the paper: PonderNet: Learning to Ponder in TensorFlow

PonderNet-TensorFlow This is an Unofficial Implementation of the paper: PonderNet: Learning to Ponder in TensorFlow. Official PyTorch Implementation:

1 Oct 23, 2022
A novel Engagement Detection with Multi-Task Training (ED-MTT) system

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment.

Onur Çopur 12 Nov 11, 2022
Jittor implementation of PCT:Point Cloud Transformer

PCT: Point Cloud Transformer This is a Jittor implementation of PCT: Point Cloud Transformer.

MenghaoGuo 547 Jan 03, 2023
Code for the paper "Reinforced Active Learning for Image Segmentation"

Reinforced Active Learning for Image Segmentation (RALIS) Code for the paper Reinforced Active Learning for Image Segmentation Dependencies python 3.6

Arantxa Casanova 79 Dec 19, 2022
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply

Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and

Arun S. Maiya 1.1k Jan 02, 2023
Catch-all collection of generative art made using processing

Generative art with Processing.py Some art I have created for fun. Dependencies Processing for Python, see how to download/use here Packages contained

2 Mar 12, 2022
Fast and robust clustering of point clouds generated with a Velodyne sensor.

Depth Clustering This is a fast and robust algorithm to segment point clouds taken with Velodyne sensor into objects. It works with all available Velo

Photogrammetry & Robotics Bonn 957 Dec 21, 2022
An example showing how to use jax to train resnet50 on multi-node multi-GPU

jax-multi-gpu-resnet50-example This repo shows how to use jax for multi-node multi-GPU training. The example is adapted from the resnet50 example in d

Yangzihao Wang 20 Jul 04, 2022
[ArXiv 2021] Data-Efficient Instance Generation from Instance Discrimination

InsGen - Data-Efficient Instance Generation from Instance Discrimination Data-Efficient Instance Generation from Instance Discrimination Ceyuan Yang,

GenForce: May Generative Force Be with You 93 Dec 25, 2022
Suite of 500 procedurally-generated NLP tasks to study language model adaptability

TaskBench500 The TaskBench500 dataset and code for generating tasks. Data The TaskBench dataset is available under wget http://web.mit.edu/bzl/www/Tas

Belinda Li 20 May 17, 2022
Unified MultiWOZ evaluation scripts for the context-to-response task.

MultiWOZ Context-to-Response Evaluation Standardized and easy to use Inform, Success, BLEU ~ See the paper ~ Easy-to-use scripts for standardized eval

Tomáš Nekvinda 38 Dec 13, 2022