A Python 3 library making time series data mining tasks, utilizing matrix profile algorithms

Overview
MPF Logo


PyPI Version PyPI Downloads Conda Version Conda Downloads Code Coverage Azure Pipelines Build Status Platforms License Twitter Discord JOSSDOI ZenodoDOI

MatrixProfile

MatrixProfile is a Python 3 library, brought to you by the Matrix Profile Foundation, for mining time series data. The Matrix Profile is a novel data structure with corresponding algorithms (stomp, regimes, motifs, etc.) developed by the Keogh and Mueen research groups at UC-Riverside and the University of New Mexico. The goal of this library is to make these algorithms accessible to both the novice and expert through standardization of core concepts, a simplistic API, and sensible default parameter values.

In addition to this Python library, the Matrix Profile Foundation, provides implementations in other languages. These languages have a pretty consistent API allowing you to easily switch between them without a huge learning curve.

Python Support

Currently, we support the following versions of Python:

  • 3.5
  • 3.6
  • 3.7
  • 3.8
  • 3.9

Python 2 is no longer supported. There are earlier versions of this library that support Python 2.

Installation

The easiest way to install this library is using pip or conda. If you would like to install it from source, please review the installation documentation for your platform.

Installation with pip

pip install matrixprofile

Installation with conda

conda config --add channels conda-forge
conda install matrixprofile

Getting Started

This article provides introductory material on the Matrix Profile: Introduction to Matrix Profiles

This article provides details about core concepts introduced in this library: How To Painlessly Analyze Your Time Series

Our documentation provides a quick start guide, examples and api documentation. It is the source of truth for getting up and running.

Algorithms

For details about the algorithms implemented, including performance characteristics, please refer to the documentation.

Getting Help

We provide a dedicated Discord channel where practitioners can discuss applications and ask questions about the Matrix Profile Foundation libraries. If you rather not join Discord, then please open a Github issue.

Contributing

Please review the contributing guidelines located in our documentation.

Code of Conduct

Please review our Code of Conduct documentation.

Citations

All proper acknowledgements for works of others may be found in our citation documentation.

Citing

Please cite this work using the Journal of Open Source Software article.

Van Benschoten et al., (2020). MPA: a novel cross-language API for time series analysis. Journal of Open Source Software, 5(49), 2179, https://doi.org/10.21105/joss.02179
@article{Van Benschoten2020,
    doi = {10.21105/joss.02179},
    url = {https://doi.org/10.21105/joss.02179},
    year = {2020},
    publisher = {The Open Journal},
    volume = {5},
    number = {49},
    pages = {2179},
    author = {Andrew Van Benschoten and Austin Ouyang and Francisco Bischoff and Tyler Marrs},
    title = {MPA: a novel cross-language API for time series analysis},
    journal = {Journal of Open Source Software}
}
Owner
Matrix Profile Foundation
Enabling community members to easily interact with the Matrix Profile algorithms through education, support and software.
Matrix Profile Foundation
Spaghetti: an open-source Python library for the analysis of network-based spatial data

pysal/spaghetti SPAtial GrapHs: nETworks, Topology, & Inference Spaghetti is an open-source Python library for the analysis of network-based spatial d

Python Spatial Analysis Library 203 Jan 03, 2023
A real-time financial data streaming pipeline and visualization platform using Apache Kafka, Cassandra, and Bokeh.

Realtime Financial Market Data Visualization and Analysis Introduction This repo shows my project about real-time stock data pipeline. All the code is

6 Sep 07, 2022
PandaPy has the speed of NumPy and the usability of Pandas 10x to 50x faster (by @firmai)

PandaPy "I came across PandaPy last week and have already used it in my current project. It is a fascinating Python library with a lot of potential to

Derek Snow 527 Jan 02, 2023
Data science/Analysis Health Care Portfolio

Health-Care-DS-Projects Data Science/Analysis Health Care Portfolio Consists Of 3 Projects: Mexico Covid-19 project, analyze the patient medical histo

Mohamed Abd El-Mohsen 1 Feb 13, 2022
DefAP is a program developed to facilitate the exploration of a material's defect chemistry

DefAP is a program developed to facilitate the exploration of a material's defect chemistry. A large number of features are provided and rapid exploration is supported through the use of autoplotting

6 Oct 25, 2022
PrimaryBid - Transform application Lifecycle Data and Design and ETL pipeline architecture for ingesting data from multiple sources to redshift

Transform application Lifecycle Data and Design and ETL pipeline architecture for ingesting data from multiple sources to redshift This project is composed of two parts: Part1 and Part2

Emmanuel Boateng Sifah 1 Jan 19, 2022
DaCe is a parallel programming framework that takes code in Python/NumPy and other programming languages

aCe - Data-Centric Parallel Programming Decoupling domain science from performance optimization. DaCe is a parallel programming framework that takes c

SPCL 330 Dec 30, 2022
First and foremost, we want dbt documentation to retain a DRY principle. Every time we repeat ourselves, we waste our time. Second, we want to understand column level lineage and automate impact analysis.

dbt-osmosis First and foremost, we want dbt documentation to retain a DRY principle. Every time we repeat ourselves, we waste our time. Second, we wan

Alexander Butler 150 Jan 06, 2023
PyPSA: Python for Power System Analysis

1 Python for Power System Analysis Contents 1 Python for Power System Analysis 1.1 About 1.2 Documentation 1.3 Functionality 1.4 Example scripts as Ju

758 Dec 30, 2022
Falcon: Interactive Visual Analysis for Big Data

Falcon: Interactive Visual Analysis for Big Data Crossfilter millions of records without latencies. This project is work in progress and not documente

Vega 803 Dec 27, 2022
Validation and inference over LinkML instance data using souffle

Translates LinkML schemas into Datalog programs and executes them using Souffle, enabling advanced validation and inference over instance data

Linked data Modeling Language 7 Aug 07, 2022
COVID-19 deaths statistics around the world

COVID-19-Deaths-Dataset COVID-19 deaths statistics around the world This is a daily updated dataset of COVID-19 deaths around the world. The dataset c

Nisa Efendioğlu 4 Jul 10, 2022
Very useful and necessary functions that simplify working with data

Additional-function-for-pandas Very useful and necessary functions that simplify working with data random_fill_nan(module_name, nan) - Replaces all sp

Alexander Goldian 2 Dec 02, 2021
Generates a simple report about the current Covid-19 cases and deaths in Malaysia

Generates a simple report about the current Covid-19 cases and deaths in Malaysia. Results are delay one day, data provided by the Ministry of Health Malaysia Covid-19 public data.

Yap Khai Chuen 7 Dec 15, 2022
fds is a tool for Data Scientists made by DAGsHub to version control data and code at once.

Fast Data Science, AKA fds, is a CLI for Data Scientists to version control data and code at once, by conveniently wrapping git and dvc

DAGsHub 359 Dec 22, 2022
Pandas-based utility to calculate weighted means, medians, distributions, standard deviations, and more.

weightedcalcs weightedcalcs is a pandas-based Python library for calculating weighted means, medians, standard deviations, and more. Features Plays we

Jeremy Singer-Vine 98 Dec 31, 2022
Supply a wrapper ``StockDataFrame`` based on the ``pandas.DataFrame`` with inline stock statistics/indicators support.

Stock Statistics/Indicators Calculation Helper VERSION: 0.3.2 Introduction Supply a wrapper StockDataFrame based on the pandas.DataFrame with inline s

Cedric Zhuang 1.1k Dec 28, 2022
Python Project on Pro Data Analysis Track

Udacity-BikeShare-Project: Python Project on Pro Data Analysis Track Basic Data Exploration with pandas on Bikeshare Data Basic Udacity project using

Belal Mohammed 0 Nov 10, 2021
Analyzing Earth Observation (EO) data is complex and solutions often require custom tailored algorithms.

eo-grow Earth observation framework for scaled-up processing in Python. Analyzing Earth Observation (EO) data is complex and solutions often require c

Sentinel Hub 18 Dec 23, 2022
Performance analysis of predictive (alpha) stock factors

Alphalens Alphalens is a Python Library for performance analysis of predictive (alpha) stock factors. Alphalens works great with the Zipline open sour

Quantopian, Inc. 2.5k Jan 09, 2023