Usando Multi Player Perceptron e Regressão Logistica para classificação de SPAM

Overview

Relatório dos procedimentos executados e resultados obtidos.

Objetivos

  • Treinar um modelo para classificação de SPAM usando o dataset train_data.
  • Classificar a coluna SMS do dataset validation_data como “ok” ou “blocked” a partir do modelo treinado.

Explorando o dataset

A partir das amostras de texto presentes na colula “SMS” do dataset train_data, foram extraidas métricas que auxiliaram a entender os dados, como prepara-los e na difinição de critérios para a escolha do modelo adequado:

  • Número de amostras: total de amostras do datset.
  • Número de classes: total de classes no dataset na coluna “LABEL”.
  • Número de amostras por classe: número de exemplos por classe.
  • Mediana de palavras por amostra: mediana do número de palavras em uma unica amostra em todo dataset.
  • Distribuição de frequência: gráfico com a distribuição do número de ocorrências das 15 palavras mais frequêntes no dataset.
Métrica Valor
Número de amostras 6000
Número de classes 2
Número de amostras classe “ok” 4500
Número de amostras classe “blocked” 1500
Mediana de palavras por amostra 10

Tabela 1: train_data métricas.

distribuicao-orig.jpg

**Figura 1: Distribuição de frequência.** 
Exemplos de SMS não bloqueadas:

recuperamos seu usuario e senha de acesso no infojobs! usuario: [email protected]. senha: miguel28. obrigado! 

MARSH CORRETORA: Anna, boleto parc. 01 do Seg Auto com venc.: 28/12/2018 enviado para:[email protected] com esclarecimentos e instrucoes 

Host : RB_Bicanga Ip: 170.244.231.14 nao esta respondendo ao ping - 2019-04-19 22:30:23

----------------------------------------------------------------------------------------

Exemplos de SMS bloqueadas:

BOLETO REFERENTE AS PARCELAS EM ATRASO DO CONSÓRCIO PELO BB.COM VENCIMENTO PARA HOJE Ñ PODE HAVER QUEBRA NO ACORDO. BONATTO ADV 0800 606 3301.

050003DA0202|lcloud-apple-lnc.com/?iphone=VtBqROY .

BB INFORMA:VALIDE SUA SENHA E EVITE TRANSTORNO. ACESSE: www.Bbrasildesbloqueio.com/?7R8BQ8CI

Figura 2: Amostras de texto

Com base na Tabela 1, observa-se que existem 2 classes e que elas estão desbalanceadas, além disso, a distribuição no Gráfico 1 e a Figura 2 mostram que o texto contém letras maiúsculas, minúsculas, números, pontuação, links, stopwords e caracteres especiais.

Escolha do modelo

Os modelos podem ser amplamente classificados em duas categorias: os que usam informações de ordenação de palavras (modelos de sequência) e aqueles que apenas veem o texto como “sacos” (conjuntos) de palavras (modelos n-gram).

Os modelos de sequência incluem redes neurais convolucionais (CNNs), redes neurais recorrentes (RNNs) e suas variações. Os tipos de modelos n-gram incluem regressão logística, multi layer perceptrons simples MLPs ou redes neurais totalmente conectadas, gradient boosted trees e support vector machines.

Com base nas informações acima e nas métricas extraídas das amostras do dataset, levou-se em consideração a razão entre o número de amostras (S) e a mediana de palavras por amostra (W) como principal critério para a escolha do modelo. Quando o valor dessa razão é pequeno (<1500), MLPs alimentandas por n-grams possuem um bom desempenho.

Nesta análise, o valor S/W obtido no dataset train_data foi de 600 ( 6000 / 10) , por isso foi escolhido o modelo MPLs.

Preparando os dados

Os dados passaram pelas seguintes etapas:

  1. Pré-processamento: apesar de não ter influenciado significativamente no desempenho geral do modelo, foi incluida uma etpa de pré-processamento para remoção de acentuação, stopwords e o texto foi colocado em lowercase.
  2. Downsampling da maioria: as classes com a maioria de amostras foram balanceadas de acordo com as classes com o menor número de amostras. Testes executados, demostraram uma melhora nos resultados.
  3. Holdout: os dados foram divididos em subconjuntos mutuamente exclusivos, de treinamento e teste na proporção 70/30 respectivamente.
  4. Tokenizção e Vetorização: divisão do texto em tokens e conversão em vetores numéricos com TfidfVectorizer.
  5. Feature Selection: selcionado as top 20.000 features mais importantes para determinado rótulo com SelectKbest e f-classif.

Construção, treino e avaliação dos resultados do Modelo

Para construção do modelo MLPs, foram usados os frameworks TensorFlow e Keras. O modelo possui duas camadas Dense, adicionando algumas camadas Dropout para regularização (para evitar overfitting). Foi utilizado o callback EarlyStop para interromper o treinamento quando os validadion loss não diminuirem em dois passos consecutivos.

Os paramêtros para treinar o modelo foram:

learning_rate=1e-3,
epochs=1000,
batch_size=128,
layers=2,
units=64,
dropout_rate=0.2

Após executar a função de treinamento, o modelo convergiu em 29 épocas com uma perda média de 0.0079 e acurácia de ~99.5 % conforme a linha abaixo.

29/29 - 0s - loss: 0.0080 - acc: 0.9956 - 24ms/epoch - 844us/step
[0.00799043569713831, 0.995555579662323]

Na Figura 3a, observamos a relação entre a acurácia nas amostras de treino e teste e a evolução das épocas. Os resultados mostram que o modelo generaliza adequadamente. A Figura 3b, no mesmo sentido, mostra a diminuição dos erros à medida que a acurácia aumenta no decorrer das épocas.

mlp_training_and_validation.jpg

                **Figura 3a: Treino e Validação acurácia.                Figura 3b  Treino e Validação perda.**

Através da matriz de confusão e das métrica na Figura 4, podemos ter mais informações sobre o desempenho do modelo de classificação em questão. O modelo classificou corretamente 461 das 465 amostras não spam , obtendo Precision = 0,993, porém classficou erroneamente como não spam uma amostra que é spam, alcançando um Recall = 0,998.

cf_matrix.jpg

                                   **Figura 4: Matriz de confusão e métricas de classificação.**

Para entender os erros de classificação, foi usado o LIME. Através dele, é possível inspecionar as amostras classificadas incorretamente e entender quais termos foram mais determinantes para os erros. Na Figura 5, a amostra analisada é um falso negativo, algo indesejado quando se trata de segurança.

explicabilidade.jpg

**Figura 5:  Explicação do Lime para um falso negativo** 

Os termos 15, you, to, code, sent e with estão contribuindo para o modelo classificar como não spam e os termos http, itunes, com e link para classificar como spam. A partir de insights fornecidos pelo LIME, é possivel alterar algumas abodagens como pré-processamento, tokenização dentre outras coisas e com isso melhorar a qualidade do modelo.

Conclusão

Foi criado um modelo ****Multi Layer Perceptron (MLPs) usando frameworks como Keras e TensorFlow para classificar dados de SMS do dataset train_data. Após varios testes o modelo atingiu um bom resultado mostrando ser aplicável em dados reais.

O dataset validation_data foi rotulado e exportado. Os dataset rotulado, este relatório, bem como todo o código utilizado na análise estão disponíveis na pasta indicada no Google Drive.

Owner
André Mediote
André Mediote
A Linux webcam plugin for BGMv2 as used in our demos.

The goal of this repository is to supplement the main Real-Time High Resolution Background Matting repo with a working demo of a videoconferencing plu

Andrey Ryabtsev 144 Dec 27, 2022
Python version of RocketLeague-Dropshot-Calculated-shot

Python version of RocketLeague-Dropshot-Calculated-shot. This is just to demo around and a tool I used to develop the actual plugin.

JareBear 1 Jan 14, 2022
Basit bir cc generator'ü.

Basit bir cc generator'ü. Setup What To Do; Python Installation We install python from CLICK Generator Board After installing the file and python, we

Lâving 7 Jan 09, 2022
Get the stats of a (or more) Hypixel player(s)

Hypixel_Stats Get the statistics of a (or more) Hypixel player(s) Who needs this? Everyone who plays a lot of Minecraft and often plays on mc.hypixel.

Finnomator 1 Feb 12, 2022
This tool allows you to do goole dorking much easier

This tool allows you to do goole dorking much easier

Steven 8 Mar 06, 2022
This is a method to build your own qgis configuration packages using osgeo4W.

This is a method to build your own qgis configuration packages using osgeo4W. Then you can automate deployment in your organization with a controled and trusted environnement.

Régis Haubourg 26 Dec 05, 2022
A system for assigning and grading notebooks

nbgrader Linux: Windows: Forum: Coverage: Cite: A system for assigning and grading Jupyter notebooks. Documentation can be found on Read the Docs. Hig

Project Jupyter 1.2k Dec 26, 2022
Turn crypto miner on/off depending on powerwall charge level

Mining Crypto with Tesla Solar and Powerwalls This script turns a crypto miner on and off when the Tesla Powerwall level drops/rises above a certain t

Matt 1 Nov 09, 2021
Extra scripts to improve user experience related to OpenTaiko

OpenTaiko-Utils Extra scripts to improve user experience related to OpenTaiko osu2tja /!\ IMPORTANT NOTE /!\ Converted charts that aren't yours are fo

2 Dec 25, 2022
Apache Airflow - A platform to programmatically author, schedule, and monitor workflows

Apache Airflow Apache Airflow (or simply Airflow) is a platform to programmatically author, schedule, and monitor workflows. When workflows are define

The Apache Software Foundation 28.6k Dec 28, 2022
Add any Program in any language you like or add a hello world Program ❣️ if you like give us :star:

Welcome to the Hacktoberfest 2018 Hello-world 📋 This Project aims to help you to get started with using Github. You can find a tutorial here What is

Aniket Sharma 1.5k Nov 16, 2022
Chalice - A tool to facilitate Python based lambda deployment

Chalice is a tool to facilitate Python based lambda deployment. This repo contains the output of my basic exploration of this tool.

Csilla Bessenyei 1 Feb 03, 2022
Run CodeServer on Google Colab using Inlets in less than 60 secs using your own domain.

Inlets Colab Run CodeServer on Colab using Inlets in less than 60 secs using your own domain. Features Optimized for Inlets/InletsPro Use your own Cus

2 Dec 30, 2021
Machine Learning powered app to decide whether a photo is food or not.

Food Not Food dot app ( 🍔 🚫 🍔 ) Code for building a machine Learning powered app to decide whether a photo is of food or not. See it working live a

Daniel Bourke 48 Dec 28, 2022
💘 Write any Python with 9 Characters: e,x,c,h,r,(,+,1,)

💘 PyFuck exchr(+1) PyFuck is a strange playful code. It uses only nine different characters to write Python3 code. Inspired by aemkei/jsfuck Example

Satoki 10 Dec 25, 2022
a really simple bot that send you memes from reddit to whatsapp

a really simple bot that send you memes from reddit to whatsapp want to use use it? install the dependencies with pip3 install -r requirements.txt the

pai 10 Nov 28, 2021
Shows VRML team stats of all players in your pubs

VRML Team Stat Searcher Displays Team Name, Team Rank (Worldwide), and tier of all the players in your pubs. GUI WIP: Only username search works (for

Hamish Burke 2 Dec 22, 2022
Sabe is a python framework written for easy web server setup.

Sabe is a python framework written for easy web server setup. Sabe, kolay web sunucusu kurulumu için yazılmış bir python çerçevesidir. Öğrenmesi kola

2 Jan 01, 2022
A collection of python exercises to help your learning path!

How to use Step 1: run this command git clone https://github.com/TechPenguineer/Python-Exercises.git Step 2: Run this command cd Python-Exercises You

Tech Penguin 5 Aug 05, 2021
Fast Base64 encoding/decoding in Python

Fast Base64 implementation This project is a wrapper on libbase64. It aims to provide a fast base64 implementation for base64 encoding/decoding. Insta

Matthieu Darbois 96 Dec 26, 2022