Unified file system operation experience for different backend

Overview

megfile - Megvii FILE library

build docs Latest version Support python versions License

megfile provides a silky operation experience with different backends (currently including local file system and OSS), which enable you to focus more on the logic of your own project instead of the question of "Which backend is used for this file?"

megfile provides:

  • Almost unified file system operation experience. Target path can be easily moved from local file system to OSS.
  • Complete boundary case handling. Even the most difficult (or even you can't even think of) boundary conditions, megfile can help you easily handle it.
  • Perfect type hints and built-in documentation. You can enjoy the IDE's auto-completion and static checking.
  • Semantic version and upgrade guide, which allows you enjoy the latest features easily.

megfile's advantages are:

  • smart_open can open resources that use various protocols, including fs, s3, http(s) and stdio. Especially, reader / writer of s3 in megfile is implemented with multi-thread, which is faster than known competitors.
  • smart_glob is available on s3. And it supports zsh extended pattern syntax of [], e.g. s3://bucket/video.{mp4,avi}.
  • All-inclusive functions like smart_exists / smart_stat / smart_sync. If you don't find the functions you want, submit an issue.
  • Compatible with pathlib.Path interface, referring to S3Path and SmartPath.

Quick Start

Here's an example of writing a file to OSS, syncing to local, reading and finally deleting it.

from megfile import smart_open, smart_exists, smart_sync, smart_remove, smart_glob
from megfile.smart_path import SmartPath

# open a file in s3 bucket
with smart_open('s3://playground/refile-test', 'w') as fp:
    fp.write('refile is not silver bullet')

# test if file in s3 bucket exist
smart_exists('s3://playground/refile-test')

# copy files or directories
smart_sync('s3://playground/refile-test', '/tmp/playground')

# remove files or directories
smart_remove('s3://playground/refile-test')

# glob files or directories in s3 bucket
smart_glob('s3://playground/video-?.{mp4,avi}')

# or in local file system
smart_exists('/tmp/playground/refile-test')

# smart_open also support protocols like http / https
smart_open('https://www.google.com')

# SmartPath interface
path = SmartPath('s3://playground/megfile-test')
if path.exists():
    with path.open() as f:
        result = f.read(7)
        assert result == b'megfile'

Installation

PyPI

pip3 install megfile

You can specify megfile version as well

pip3 install "megfile~=0.0"

Build from Source

megfile can be installed from source

git clone [email protected]:megvii-research/megfile.git
cd megfile
pip3 install -U .

Development Environment

git clone [email protected]:megvii-research/megfile.git
cd megfile
sudo apt install libgl1-mesa-glx libfuse-dev fuse
pip3 install -r requirements.txt -r requirements-dev.txt

How to Contribute

  • We welcome everyone to contribute code to the megfile project, but the contributed code needs to meet the following conditions as much as possible:

    You can submit code even if the code doesn't meet conditions. The project members will evaluate and assist you in making code changes

    • Code format: Your code needs to pass code format check. megfile uses yapf as lint tool and the version is locked at 0.27.0. The version lock may be removed in the future

    • Static check: Your code needs complete type hint. megfile uses pytype as static check tool. If pytype failed in static check, use # pytype: disable=XXX to disable the error and please tell us why you disable it.

      Note : Because pytype doesn't support variable type annation, the variable type hint format introduced by py36 cannot be used.

      i.e. variable: int is invalid, replace it with variable # type: int

    • Test: Your code needs complete unit test coverage. megfile uses pyfakefs and moto as local file system and OSS virtual environment in unit tests. The newly added code should have a complete unit test to ensure the correctness

  • You can help to improve megfile in many ways:

    • Write code.
    • Improve documentation.
    • Report or investigate bugs and issues.
    • If you find any problem or have any improving suggestion, submit a new issuse as well. We will reply as soon as possible and evaluate whether to adopt.
    • Review pull requests.
    • Star megfile repo.
    • Recommend megfile to your friends.
    • Any other form of contribution is welcomed.
Owner
MEGVII Research
Power Human with AI. 持续创新拓展认知边界 非凡科技成就产品价值
MEGVII Research
Realtime Face Anti Spoofing with Face Detector based on Deep Learning using Tensorflow/Keras and OpenCV

Realtime Face Anti-Spoofing Detection 🤖 Realtime Face Anti Spoofing Detection with Face Detector to detect real and fake faces Please star this repo

Prem Kumar 86 Aug 03, 2022
Statsmodels: statistical modeling and econometrics in Python

About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an

statsmodels 8.1k Jan 02, 2023
Scientific Computation Methods in C and Python (Open for Hacktoberfest 2021)

Sci - cpy README is a stub. Do expand it. Objective This repository is meant to be a ready reference for scientific computation methods. Do ⭐ it if yo

Sandip Dutta 7 Oct 12, 2022
Learning-Augmented Dynamic Power Management

Learning-Augmented Dynamic Power Management This repository contains source code accompanying paper Learning-Augmented Dynamic Power Management with M

Adam 0 Feb 22, 2022
Allows including an action inside another action (by preprocessing the Yaml file). This is how composite actions should have worked.

actions-includes Allows including an action inside another action (by preprocessing the Yaml file). Instead of using uses or run in your action step,

Tim Ansell 70 Nov 04, 2022
Official Pytorch implementation of MixMo framework

MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks Official PyTorch implementation of the MixMo framework | paper | docs Alexandr

79 Nov 07, 2022
Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations

TopClus The source code used for Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations, published in WWW 2022. Requ

Yu Meng 63 Dec 18, 2022
Source code of our work: "Benchmarking Deep Models for Salient Object Detection"

SALOD Source code of our work: "Benchmarking Deep Models for Salient Object Detection". In this works, we propose a new benchmark for SALient Object D

22 Dec 30, 2022
graph-theoretic framework for robust pairwise data association

CLIPPER: A Graph-Theoretic Framework for Robust Data Association Data association is a fundamental problem in robotics and autonomy. CLIPPER provides

MIT Aerospace Controls Laboratory 118 Dec 28, 2022
Augmented Traffic Control: A tool to simulate network conditions

Augmented Traffic Control Full documentation for the project is available at http://facebook.github.io/augmented-traffic-control/. Overview Augmented

Meta Archive 4.3k Jan 08, 2023
Wikidated : An Evolving Knowledge Graph Dataset of Wikidata’s Revision History

Wikidated Wikidated 1.0 is a dataset of Wikidata’s full revision history, which encodes changes between Wikidata revisions as sets of deletions and ad

Lukas Schmelzeisen 11 Aug 16, 2022
Deep Crop Rotation

Deep Crop Rotation Paper (to come very soon!) We propose a deep learning approach to modelling both inter- and intra-annual patterns for parcel classi

Félix Quinton 5 Sep 23, 2022
Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021)

UNITE and UNITE+ Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021) Unbalanced Intrinsic Feature Transport for Exemplar-bas

Fangneng Zhan 183 Nov 09, 2022
Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022)

Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022) Please cite "Independent SE(3)-Equivar

Octavian Ganea 154 Jan 02, 2023
Trajectory Variational Autoencder baseline for Multi-Agent Behavior challenge 2022

MABe_2022_TVAE: a Trajectory Variational Autoencoder baseline for the 2022 Multi-Agent Behavior challenge This repository contains jupyter notebooks t

Andrew Ulmer 15 Nov 08, 2022
RefineGNN - Iterative refinement graph neural network for antibody sequence-structure co-design (RefineGNN)

Iterative refinement graph neural network for antibody sequence-structure co-des

Wengong Jin 83 Dec 31, 2022
GitHub repository for "Improving Video Generation for Multi-functional Applications"

Improving Video Generation for Multi-functional Applications GitHub repository for "Improving Video Generation for Multi-functional Applications" Pape

Bernhard Kratzwald 328 Dec 07, 2022
The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv SAINT: Improved Neural Networks for Tabular Data via Row Atte

Gowthami Somepalli 284 Dec 21, 2022
Using Machine Learning to Create High-Res Fine Art

BIG.art: Using Machine Learning to Create High-Res Fine Art How to use GLIDE and BSRGAN to create ultra-high-resolution paintings with fine details By

Robert A. Gonsalves 13 Nov 27, 2022
Official code repository of the paper Learning Associative Inference Using Fast Weight Memory by Schlag et al.

Learning Associative Inference Using Fast Weight Memory This repository contains the offical code for the paper Learning Associative Inference Using F

Imanol Schlag 18 Oct 12, 2022