Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval

Related tags

Deep LearningBiDR
Overview

BiDR

Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval.

Requirements

torch==1.7
transformers==4.6
faiss-gpu==1.6.4.post2

Data Download and Preprocess

bash download_data.sh
python preprocess.py

These commands will download and preprocess the MSMARCO Passage and Doc dataset, then the resutls will be saved to ./data.
We take the Passage dataset as the example to show the running workflow.

Conventional Workflow

Representation Learning

Train the encoder with random negative (or set --hardneg_json to provied bm25/hard negatives) :

mkdir log
dataset=passage
savename=dense_global_model
python train.py --model_name_or_path roberta-base \
--max_query_length 24 --max_doc_length 128 \
--data_dir ./data/${dataset}/preprocess \
--learning_rate 1e-4 --optimizer_str adamw \
--per_device_train_batch_size 128 \
--per_query_neg_num 1 \
--generate_batch_method random \
--loss_method multi_ce  \
--savename ${savename} --save_model_path ./model \
--world_size 8 --gpu_rank 0_1_2_3_4_5_6_7  --master_port 13256 \
--num_train_epochs 30  \
--use_pq False \
|tee ./log/${savename}.log

Unsupervised Quantization

Generate dense embeddings of queries and docs:

data_type=passage
savename=dense_global_model
epoch=20
python ./inference.py \
--data_type ${data_type} \
--preprocess_dir ./data/${data_type}/preprocess/ \
--max_doc_length 256 --max_query_length 32 \
--eval_batch_size 512 \
--ckpt_path ./model/${savename}/${epoch}/ \
--output_dir  evaluate/${savename}_${epoch} 

Product Quantization based on Faiss and recall performance:

data_type=passage
savename=dense_global_model
epoch=20
python ./test/lightweight_ann.py \
--output_dir ./data/${data_type}/evaluate/${savename}_${epoch} \
--ckpt_path /model/${savename}/${epoch}/ \
--subvector_num 96 \
--index opq \
--topk 1000 \
--data_type ${data_type} \
--MRR_cutoff 10 \
--Recall_cutoff 5 10 30 50 100

Progressively Optimized Bi-Granular Document Representation

Sparse Representation Learning

Instead of running unsupervised quantization for the well-learned dense embeddings, the sparse embeddings are generated from contrastive learning, which optimizes the global discrimination and helps to enable high-quality answers to be covered in candidate search.

Train

We find that using Faiss OPQ to initialize the PQ module has a significant gain for MSMARCO dataset. But for the largest dataset: Ads dataset, initialization with Faiss OPQ is redundant and has no promotion.

dataset=passage
savename=sparse_global_model
python train.py --model_name_or_path ./model/dense_global_model/20 \
--max_query_length 24 --max_doc_length 128 \
--data_dir ./data/${dataset}/preprocess \
--learning_rate 1e-4 --optimizer_str adamw \
--per_device_train_batch_size 128 \
--per_query_neg_num 1 \
--generate_batch_method random \
--loss_method multi_ce  \
--savename ${savename} --save_model_path ./model \
--world_size 8 --gpu_rank 0_1_2_3_4_5_6_7  --master_port 13256 \
--num_train_epochs 30  \
--use_pq True \
--init_index_path ./data/${data_type}/evaluate/dense_global_model_20/OPQ96,PQ96x8.index \
--partition 96 --centroids 256 --quantloss_weight 0.0 \
|tee ./log/${savename}.log

where the ./model/dense_global_model/20 and ./data/${data_type}/evaluate/dense_global_model_20/OPQ96,PQ96x8.index is generated by conventional workflow.

Test

data_type=passage
savename=sparse_global_model
epoch=20

python ./inference.py \
--data_type ${data_type} \
--preprocess_dir ./data/${data_type}/preprocess/ \
--max_doc_length 256 --max_query_length 32 \
--eval_batch_size 512 \
--ckpt_path ./model/${savename}/${epoch}/ \
--output_dir  evaluate/${savename}_${epoch} 

python ./test/lightweight_ann.py \
--output_dir ./data/${data_type}/evaluate/${savename}_${epoch} \
--subvector_num 96 \
--index opq \
--topk 1000 \
--data_type ${data_type} \
--MRR_cutoff 10 \
--Recall_cutoff 5 10 30 50 100 \
--ckpt_path ./model/${savename}/${epoch}/ \
--init_index_path ./data/${data_type}/evaluate/dense_global_model_20/OPQ96,PQ96x8.index

Dense Representation Learning

The dense embeddings are optimized based on the candidate distribution generated by sparse embeddings. We propose a novel sampling strategy called locality-centric sampling to enhance local discrimination: construct a bipartite proximity graph and conduct random walk or snow sample on it.

Train

Encode the quries in train set and generate the candidates for all train queries:

data_type=passage
savename=sparse_global_model
epoch=20

python ./inference.py \
--data_type ${data_type} \
--preprocess_dir ./data/${data_type}/preprocess/ \
--max_doc_length 256 --max_query_length 32 \
--eval_batch_size 512 \
--ckpt_path ./model/${savename}/${epoch}/ \
--output_dir  evaluate/${savename}_${epoch} \
--mode train

python ./test/lightweight_ann.py \
--output_dir ./data/${data_type}/evaluate/${savename}_${epoch} \
--subvector_num 96 \
--index opq \
--topk 1000 \
--data_type ${data_type} \
--MRR_cutoff 10 \
--Recall_cutoff 5 10 30 50 100 \
--ckpt_path ./model/${savename}/${epoch}/ \
--init_index_path ./data/${data_type}/evaluate/dense_global_model_20/OPQ96,PQ96x8.index \
--mode train \
--save_hardneg_to_json

This command will save the train_hardneg.json to output_dir. Then train the dense embeddings to distinguish the ground truth from the negative in candidate:

dataset=passage
savename=dense_local_model
python train.py --model_name_or_path roberta-base \
--max_query_length 24 --max_doc_length 128 \
--data_dir ./data/${dataset}/preprocess \
--learning_rate 1e-4 --optimizer_str adamw \
--per_device_train_batch_size 128 \
--per_query_neg_num 1 \
--generate_batch_method {random_walk or snow_sample} \
--loss_method multi_ce  \
--savename ${savename} --save_model_path ./model \
--world_size 8 --gpu_rank 0_1_2_3_4_5_6_7  --master_port 13256 \
--num_train_epochs 30  \
--use_pq False \
--hardneg_json ./data/${data_type}/evaluate/sparse_global_model_20/train_hardneg.json \
--mink 0  --maxk 200 \
|tee ./log/${savename}.log

Test

data_type=passage
savename=dense_local_model
epoch=10

python ./inference.py \
--data_type ${data_type} \
--preprocess_dir ./data/${data_type}/preprocess/ \
--ckpt_path ./model/${savename}/${epoch}/ \
--max_doc_length 256 --max_query_length 32 \
--eval_batch_size 512 \
--ckpt_path ./model/${savename}/${epoch}/ \
--output_dir  evaluate/${savename}_${epoch} 

python ./test/post_verification.py \
--data_type ${data_type} \
--output_dir  evaluate/${savename}_${epoch} \
--candidate_from_ann ./data/${data_type}/evaluate/sparse_global_model_20/dev.rank_1000_score_faiss_opq.tsv \
--MRR_cutoff 10 \
--Recall_cutoff 5 10 30 50 100

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Video Corpus Moment Retrieval with Contrastive Learning (SIGIR 2021)

Video Corpus Moment Retrieval with Contrastive Learning PyTorch implementation for the paper "Video Corpus Moment Retrieval with Contrastive Learning"

ZHANG HAO 42 Dec 29, 2022
Rule Extraction Methods for Interactive eXplainability

REMIX: Rule Extraction Methods for Interactive eXplainability This repository contains a variety of tools and methods for extracting interpretable rul

Mateo Espinosa Zarlenga 21 Jan 03, 2023
Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi

A tutorial showing how to set up TensorFlow's Object Detection API on the Raspberry Pi

Evan 1.1k Dec 26, 2022
PyTorch implementation of Off-policy Learning in Two-stage Recommender Systems

Off-Policy-2-Stage This repo provides a PyTorch implementation of the MovieLens experiments for the following paper: Off-policy Learning in Two-stage

Jiaqi Ma 25 Dec 12, 2022
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
So-ViT: Mind Visual Tokens for Vision Transformer

So-ViT: Mind Visual Tokens for Vision Transformer        Introduction This repository contains the source code under PyTorch framework and models trai

Jiangtao Xie 44 Nov 24, 2022
SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab

CORNELLSASLAB SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab Instructions: This python code can be used to convert SAS out

2 Jan 26, 2022
Crab is a flexible, fast recommender engine for Python that integrates classic information filtering recommendation algorithms in the world of scientific Python packages (numpy, scipy, matplotlib).

Crab - A Recommendation Engine library for Python Crab is a flexible, fast recommender engine for Python that integrates classic information filtering r

python-recsys 1.2k Dec 21, 2022
Earth Vision Foundation

EVer - A Library for Earth Vision Researcher EVer is a Pytorch-based Python library to simplify the training and inference of the deep learning model.

Zhuo Zheng 34 Nov 26, 2022
A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.

Awesome Pretrained StyleGAN2 A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution. Note the readme is a

Justin 1.1k Dec 24, 2022
HyDiff: Hybrid Differential Software Analysis

HyDiff: Hybrid Differential Software Analysis This repository provides the tool and the evaluation subjects for the paper HyDiff: Hybrid Differential

Yannic Noller 22 Oct 20, 2022
Transfer Learning Shootout for PyTorch's model zoo (torchvision)

pytorch-retraining Transfer Learning shootout for PyTorch's model zoo (torchvision). Load any pretrained model with custom final layer (num_classes) f

Alexander Hirner 169 Jun 29, 2022
Image Restoration Using Swin Transformer for VapourSynth

SwinIR SwinIR function for VapourSynth, based on https://github.com/JingyunLiang/SwinIR. Dependencies NumPy PyTorch, preferably with CUDA. Note that t

Holy Wu 11 Jun 19, 2022
A NSFW content filter.

Project_Nfilter A NSFW content filter. With a motive of minimizing the spreads and leakage of NSFW contents on internet and access to others devices ,

1 Jan 20, 2022
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Project Page | Paper A Shading-Guided Generative Implicit Model

Xingang Pan 115 Dec 18, 2022
HNN: Human (Hollywood) Neural Network

HNN: Human (Hollywood) Neural Network Learn the top 1000 actors on IMDB with your very own low cost, highly parallel, CUDAless biological neural netwo

Madhava Jay 0 Dec 21, 2021
Official PyTorch implementation for paper "Efficient Two-Stage Detection of Human–Object Interactions with a Novel Unary–Pairwise Transformer"

UPT: Unary–Pairwise Transformers This repository contains the official PyTorch implementation for the paper Frederic Z. Zhang, Dylan Campbell and Step

Frederic Zhang 109 Dec 20, 2022
Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect"

Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect" by Michael Ne

M Nestor 1 Apr 19, 2022
Self-Supervised Deep Blind Video Super-Resolution

Self-Blind-VSR Paper | Discussion Self-Supervised Deep Blind Video Super-Resolution By Haoran Bai and Jinshan Pan Abstract Existing deep learning-base

Haoran Bai 35 Dec 09, 2022
A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

Fabian Offert 5 Dec 14, 2022