Data, model training, and evaluation code for "PubTables-1M: Towards a universal dataset and metrics for training and evaluating table extraction models".

Overview

PubTables-1M

This repository contains training and evaluation code for the paper "PubTables-1M: Towards a universal dataset and metrics for training and evaluating table extraction models".

The goal of PubTables-1M is to create a large, detailed, high-quality dataset for training and evaluating a wide variety of models for the tasks of table detection, table structure recognition, and functional analysis. It contains:

  • 460,589 annotated document pages containing tables for table detection.
  • 947,642 fully annotated tables including text content and complete location (bounding box) information for table structure recognition and functional analysis.
  • Full bounding boxes in both image and PDF coordinates for all table rows, columns, and cells (including blank cells), as well as other annotated structures such as column headers and projected row headers.
  • Rendered images of all tables and pages.
  • Bounding boxes and text for all words appearing in each table and page image.
  • Additional cell properties not used in the current model training.

Additionally, cells in the headers are canonicalized and we implement multiple quality control steps to ensure the annotations are as free of noise as possible. For more details, please see our paper.

News

10/21/2021: The full PubTables-1M dataset has been officially released on Microsoft Research Open Data.

Getting the Data

PubTables-1M is available for download from Microsoft Research Open Data.

It comes in 5 tar.gz files:

  • PubTables-1M-Image_Page_Detection_PASCAL_VOC.tar.gz
  • PubTables-1M-Image_Page_Words_JSON.tar.gz
  • PubTables-1M-Image_Table_Structure_PASCAL_VOC.tar.gz
  • PubTables-1M-Image_Table_Words_JSON.tar.gz
  • PubTables-1M-PDF_Annotations_JSON.tar.gz

To download from the command line:

  1. Visit the dataset home page with a web browser and click Download in the top left corner. This will create a link to download the dataset from Azure with a unique access token for you that looks like https://msropendataset01.blob.core.windows.net/pubtables1m?[SAS_TOKEN_HERE].
  2. You can then use the command line tool azcopy to download all of the files with the following command:
azcopy copy "https://msropendataset01.blob.core.windows.net/pubtables1m?[SAS_TOKEN_HERE]" "/path/to/your/download/folder/" --recursive

Then unzip each of the archives from the command line using:

tar -xzvf yourfile.tar.gz

Code Installation

Create a conda environment from the yml file and activate it as follows

conda env create -f environment.yml
conda activate tables-detr

Model Training

The code trains models for 2 different sets of table extraction tasks:

  1. Table Detection
  2. Table Structure Recognition + Functional Analysis

For a detailed description of these tasks and the models, please refer to the paper.

Sample training commands:

cd src
python main.py --data_root_dir /path/to/detection --data_type detection
python main.py --data_root_dir /path/to/structure --data_type structure

GriTS metric evaluation

GriTS metrics proposed in the paper can be evaluated once you have trained a model. We consider the model trained in the previous step. This script calculates all 4 variations presented in the paper. Based on the model, one can tune which variation to use. The table words dir path is not required for all variations but we use it in our case as PubTables1M contains this information.

python main.py --data_root_dir /path/to/structure --model_load_path /path/to/model --table_words_dir /path/to/table/words --mode grits

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Experiment about Deep Person Re-identification with EfficientNet-v2

We evaluated the baseline with Resnet50 and Efficienet-v2 without using pretrained models. Also Resnet50-IBN-A and Efficientnet-v2 using pretrained on ImageNet. We used two datasets: Market-1501 and

lan.nguyen2k 77 Jan 03, 2023
PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

ERTIS Research Group 7 Aug 01, 2022
Planner_backend - Academic planner application designed for students and counselors.

Planner (backend) Academic planner application designed for students and advisors.

2 Dec 31, 2021
Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Seulki Park 70 Jan 03, 2023
Minimal deep learning library written from scratch in Python, using NumPy/CuPy.

SmallPebble Project status: experimental, unstable. SmallPebble is a minimal/toy automatic differentiation/deep learning library written from scratch

Sidney Radcliffe 92 Dec 30, 2022
Deep Crop Rotation

Deep Crop Rotation Paper (to come very soon!) We propose a deep learning approach to modelling both inter- and intra-annual patterns for parcel classi

Félix Quinton 5 Sep 23, 2022
Modular Gaussian Processes

Modular Gaussian Processes for Transfer Learning 🧩 Introduction This repository contains the implementation of our paper Modular Gaussian Processes f

Pablo Moreno-Muñoz 10 Mar 15, 2022
nn_builder lets you build neural networks with less boilerplate code

nn_builder lets you build neural networks with less boilerplate code. You specify the type of network you want and it builds it. Install pip install n

Petros Christodoulou 157 Nov 20, 2022
PyTorch implementation of Off-policy Learning in Two-stage Recommender Systems

Off-Policy-2-Stage This repo provides a PyTorch implementation of the MovieLens experiments for the following paper: Off-policy Learning in Two-stage

Jiaqi Ma 25 Dec 12, 2022
DecoupledNet is semantic segmentation system which using heterogeneous annotations

DecoupledNet: Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation Created by Seunghoon Hong, Hyeonwoo Noh and Bohyung Han at POSTE

Hyeonwoo Noh 74 Sep 22, 2021
Ladder Variational Autoencoders (LVAE) in PyTorch

Ladder Variational Autoencoders (LVAE) PyTorch implementation of Ladder Variational Autoencoders (LVAE) [1]: where the variational distributions q at

Andrea Dittadi 63 Dec 22, 2022
Object detection and instance segmentation toolkit based on PaddlePaddle.

Object detection and instance segmentation toolkit based on PaddlePaddle.

9.3k Jan 02, 2023
BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search

BossNAS This repository contains PyTorch evaluation code, retraining code and pretrained models of our paper: BossNAS: Exploring Hybrid CNN-transforme

Changlin Li 127 Dec 26, 2022
To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beginners, intermediates as well as experts

JaxTon 💯 JAX exercises Mission 🚀 To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beg

Rohan Rao 512 Jan 01, 2023
H&M Fashion Image similarity search with Weaviate and DocArray

H&M Fashion Image similarity search with Weaviate and DocArray This example shows how to do image similarity search using DocArray and Weaviate as Doc

Laura Ham 18 Aug 11, 2022
Flax is a neural network ecosystem for JAX that is designed for flexibility.

Flax: A neural network library and ecosystem for JAX designed for flexibility Overview | Quick install | What does Flax look like? | Documentation See

Google 3.9k Jan 02, 2023
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

This repo is the official implementation of "Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework". @inproceedings{zhou2021insta

34 Dec 31, 2022
Collection of common code that's shared among different research projects in FAIR computer vision team.

fvcore fvcore is a light-weight core library that provides the most common and essential functionality shared in various computer vision frameworks de

Meta Research 1.5k Jan 07, 2023