SANet: A Slice-Aware Network for Pulmonary Nodule Detection

Related tags

Deep LearningSANet
Overview

SANet: A Slice-Aware Network for Pulmonary Nodule Detection

This paper (SANet) has been accepted and early accessed in IEEE TPAMI 2021.

This code and our data are licensed for non-commerical research purpose only.

Introduction

Lung cancer is the most common cause of cancer death worldwide. A timely diagnosis of the pulmonary nodules makes it possible to detect lung cancer in the early stage, and thoracic computed tomography (CT) provides a convenient way to diagnose nodules. However, it is hard even for experienced doctors to distinguish them from the massive CT slices. The currently existing nodule datasets are limited in both scale and category, which is insufficient and greatly restricts its applications. In this paper, we collect the largest and most diverse dataset named PN9 for pulmonary nodule detection by far. Specifically, it contains 8,798 CT scans and 40,439 annotated nodules from 9 common classes. We further propose a slice-aware network (SANet) for pulmonary nodule detection. A slice grouped non-local (SGNL) module is developed to capture long-range dependencies among any positions and any channels of one slice group in the feature map. And we introduce a 3D region proposal network to generate pulmonary nodule candidates with high sensitivity, while this detection stage usually comes with many false positives. Subsequently, a false positive reduction module (FPR) is proposed by using the multi-scale feature maps. To verify the performance of SANet and the significance of PN9, we perform extensive experiments compared with several state-of-the-art 2D CNN-based and 3D CNN-based detection methods. Promising evaluation results on PN9 prove the effectiveness of our proposed SANet.

SANet

Citations

If you are using the code/model/data provided here in a publication, please consider citing:

@article{21PAMI-SANet,
title={SANet: A Slice-Aware Network for Pulmonary Nodule Detection},
author={Jie Mei and Ming-Ming Cheng and Gang Xu and Lan-Ruo Wan and Huan Zhang},
journal={IEEE transactions on pattern analysis and machine intelligence},
year={2021},
publisher={IEEE},
doi={10.1109/TPAMI.2021.3065086}
}

Requirements

The code is built with the following libraries:

Besides, you need to install a custom module for bounding box NMS and overlap calculation.

cd build/box
python setup.py install

Data

Our new pulmonary nodule dataset PN9 is available now, please refer to here for more information.

Note: Considering the big size of raw data, we provide the PN9 dataset (after preprocessing as described in Sec. 5.2 of our paper) with two formats: .npy files and .jpg images. The data preprocessing contains spatially normalized (including the imaging thickness and spacing, the normalized data is 1mm x 1mm x 1mm.) and transforming the data into [0, 255]. The .npy files store the exact values of the corresponding samples while the .jpg images store the compressed ones. The .jpg version of our dataset is provided with the consideration of reducing the size of PN9 for more convenient distribution over the internet. We have done several ablation experiments on both versions of PN9 (i.e., .npy and .jpg), and the difference between the results basing on different data formats is little.

Download the PN9 and add the information to config.py.

Testing

The pretrained model of SANet with npy files can be downloaded here.

Run the following scripts to evaluate the model and obtain the results of FROC analysis.

python test.py --weight='./results/model/model.ckpt' --out_dir='./results/' --test_set_name='./test.txt'

Training

This implementation supports multi-gpu, data_parallel training.

Change training configuration and data configuration in config.py, especially the path to preprocessed data.

Run the training script:

python train.py

Contact

For any questions, please contact me via e-mail: [email protected].

Acknowledgment

This code is based on the NoduleNet codebase.

Owner
Jie Mei
PhD
Jie Mei
Learning-based agent for Google Research Football

TiKick 1.Introduction Learning-based agent for Google Research Football Code accompanying the paper "TiKick: Towards Playing Multi-agent Football Full

Tsinghua AI Research Team for Reinforcement Learning 90 Dec 26, 2022
Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems

Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems This repository is the official implementation of Rever

6 Aug 25, 2022
Betafold - AlphaFold with tunings

BetaFold We (hegelab.org) craeted this standalone AlphaFold (AlphaFold-Multimer,

2 Aug 11, 2022
Simple and ready-to-use tutorials for TensorFlow

TensorFlow World To support maintaining and upgrading this project, please kindly consider Sponsoring the project developer. Any level of support is a

Amirsina Torfi 4.5k Dec 23, 2022
PEPit is a package enabling computer-assisted worst-case analyses of first-order optimization methods.

PEPit: Performance Estimation in Python This open source Python library provides a generic way to use PEP framework in Python. Performance estimation

Baptiste 53 Nov 16, 2022
DuBE: Duple-balanced Ensemble Learning from Skewed Data

DuBE: Duple-balanced Ensemble Learning from Skewed Data "Towards Inter-class and Intra-class Imbalance in Class-imbalanced Learning" (IEEE ICDE 2022 S

6 Nov 12, 2022
一些经典的CTR算法的复现; LR, FM, FFM, AFM, DeepFM,xDeepFM, PNN, DCN, DCNv2, DIFM, AutoInt, FiBiNet,AFN,ONN,DIN, DIEN ... (pytorch, tf2.0)

CTR Algorithm 根据论文, 博客, 知乎等方式学习一些CTR相关的算法 理解原理并自己动手来实现一遍 pytorch & tf2.0 保持一颗学徒的心! Schedule Model pytorch tensorflow2.0 paper LR ✔️ ✔️ \ FM ✔️ ✔️ Fac

luo han 149 Dec 20, 2022
PyTorch common framework to accelerate network implementation, training and validation

pytorch-framework PyTorch common framework to accelerate network implementation, training and validation. This framework is inspired by works from MML

Dongliang Cao 3 Dec 19, 2022
Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order of magnitude using coresets and data selection.

COResets and Data Subset selection Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order

decile-team 244 Jan 09, 2023
RCT-ART is an NLP pipeline built with spaCy for converting clinical trial result sentences into tables through jointly extracting intervention, outcome and outcome measure entities and their relations.

Randomised controlled trial abstract result tabulator RCT-ART is an NLP pipeline built with spaCy for converting clinical trial result sentences into

2 Sep 16, 2022
A curated list of awesome resources combining Transformers with Neural Architecture Search

A curated list of awesome resources combining Transformers with Neural Architecture Search

Yash Mehta 173 Jan 03, 2023
Genpass - A Passwors Generator App With Python3

Genpass Welcom again into another python3 App this is simply an Passwors Generat

Mal4D 1 Jan 09, 2022
Introduction to CPM

CPM CPM is an open-source program on large-scale pre-trained models, which is conducted by Beijing Academy of Artificial Intelligence and Tsinghua Uni

Tsinghua AI 136 Dec 23, 2022
The spiritual successor to knockknock for PyTorch Lightning, get notified when your training ends

Who's there? The spiritual successor to knockknock for PyTorch Lightning, to get a notification when your training is complete or when it crashes duri

twsl 70 Oct 06, 2022
Generic ecosystem for feature extraction from aerial and satellite imagery

Note: Robosat is neither maintained not actively developed any longer by Mapbox. See this issue. The main developers (@daniel-j-h, @bkowshik) are no l

Mapbox 1.9k Jan 06, 2023
(NeurIPS '21 Spotlight) IQ-Learn: Inverse Q-Learning for Imitation

Inverse Q-Learning (IQ-Learn) Official code base for IQ-Learn: Inverse soft-Q Learning for Imitation, NeurIPS '21 Spotlight IQ-Learn is an easy-to-use

Divyansh Garg 102 Dec 20, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Ubisoft 76 Dec 30, 2022
A curated list and survey of awesome Vision Transformers.

English | 简体中文 A curated list and survey of awesome Vision Transformers. You can use mind mapping software to open the mind mapping source file. You c

OpenMMLab 281 Dec 21, 2022
Drslmarkov - Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

1 Nov 24, 2022
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

STACS 18 Aug 04, 2022