Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Overview

MViTs Excel at Class-agnostic Object Detection

PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC

Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Muhammad Maaz, Hanoona Rasheed, Salman Khan, Fahad Shahbaz Khan, Rao Muhammad Anwer and Ming-Hsuan Yang

Paper: https://arxiv.org/abs/2111.11430


main figure

Abstract: What constitutes an object? This has been a long-standing question in computer vision. Towards this goal, numerous learning-free and learning-based approaches have been developed to score objectness. However, they generally do not scale well across new domains and for unseen objects. In this paper, we advocate that existing methods lack a top-down supervision signal governed by human-understandable semantics. To bridge this gap, we explore recent Multi-modal Vision Transformers (MViT) that have been trained with aligned image-text pairs. Our extensive experiments across various domains and novel objects show the state-of-the-art performance of MViTs to localize generic objects in images. Based on these findings, we develop an efficient and flexible MViT architecture using multi-scale feature processing and deformable self-attention that can adaptively generate proposals given a specific language query. We show the significance of MViT proposals in a diverse range of applications including open-world object detection, salient and camouflage object detection, supervised and self-supervised detection tasks. Further, MViTs offer enhanced interactability with intelligible text queries.


Architecture overview of MViTs used in this work

Architecture overview


Results


Class-agnostic OD performance of MViTs in comparison with uni-modal detector (RetinaNet) on several datasets. MViTs show consistently good results on all datasets.

Results


Enhanced Interactability: Effect of using different intuitive text queries on the MDef-DETR class-agnostic OD performance. Combining detections from multiple queries captures varying aspects of objectness.

Results


Generalization to Rare/Novel Classes: MDef-DETR class-agnostic OD performance on rarely and frequently occurring categories in the pretraining captions. The numbers on top of the bars indicate occurrences of the corresponding category in the training dataset. The MViT achieves good recall values even for the classes with no or very few occurrences.

Results


Open-world Object Detection: Effect of using class-agnostic OD proposals from MDef-DETR for pseudo labelling of unknowns in Open World Detector (ORE).

Results


Pretraining for Class-aware Object Detection: Effect of using MDef-DETR proposals for pre-training of DETReg instead of Selective Search proposals.

Results


Evaluation

The provided codebase contains the pre-computed detections for all datasets using ours MDef-DETR model. The provided directory structure is as follows,

-> README.md
-> LICENSE
-> get_eval_metrics.py
-> get_multi_dataset_eval_metrics.py
-> data
    -> voc2007
        -> combined.pkl
    -> coco
        -> combined.pkl
    -> kitti
        -> combined.pkl
    -> kitchen
        -> combined.pkl
    -> cliaprt
        -> combined.pkl
    -> comic
        -> combined.pkl
    -> watercolor
        -> combined.pkl
    -> dota
        -> combined.pkl

Where combined.pkl contains the combined detections from multiple intutive text queries for corresponding datasets. (Refer Section 5.1: Enhanced Interactability for more details)

Download the annotations for all datasets and arrange them as shown below. Note that the script expect COCO annotations in standard COCO format & annotations of all other datasets in VOC format.

...
...
-> data
    -> voc2007
        -> combined.pkl
        -> Annotations
    -> coco
        -> combined.pkl
        -> instances_val2017_filt.json
    -> kitti
        -> combined.pkl
        -> Annotations
        ...
    -> kitchen
        -> combined.pkl
        -> Annotations
    -> cliaprt
        -> combined.pkl
        -> Annotations
    -> comic
        -> combined.pkl
        -> Annotations
    -> watercolor
        -> combined.pkl
        -> Annotations
    -> dota
        -> combined.pkl
        -> Annotations

Once the above mentioned directory structure is created, follow the following steps to calculate the metrics.

  1. Install numpy
$ pip install numpy
  1. Calculate metrics
$ python get_multi_dataset_eval_metrics.py

The calculated metrics will be stored in a data.csv file in the same directory.


Citation

If you use our work, please consider citing:

@article{Maaz2021Multimodal,
    title={Multi-modal Transformers Excel at Class-agnostic Object Detection},
    author={Muhammad Maaz and Hanoona Rasheed and Salman Khan and Fahad Shahbaz Khan and Rao Muhammad Anwer and Ming-Hsuan Yang},
    journal={ArXiv 2111.11430},
    year={2021}
}

Contact

Should you have any question, please contact [email protected] or [email protected]

🚀 Note: The repository contains the minimum evaluation code. The complete training and inference scripts along with pretrained models will be released soon. Stay Tuned!

Comments
  • aligning image text pairs

    aligning image text pairs

    I have a question on the paper: you train on aligned image-text pairs. How do you create this alignment? is it the same way as in MDeTr? I did not fully understand from the paper, especially for non-natural images like satellite images or medical images.

    opened by nikky4D 6
  • Loading checkpoints for inference

    Loading checkpoints for inference

    Which checkpoints in drive link you provided will load correctly in default MDefDETR model without any errors? Im getting missing/unexpected keys errors.

    documentation 
    opened by KaleemW 4
  • Is EMA used in this work?

    Is EMA used in this work?

    Hello author, thanks for your great work. I raise a question about the usage of Exponential Moving Average (EMA) in this paper, hoping you can provide me with some clues. It seems that this paper does not detail in this part. As far as I know, MDETR uses it and evaluate use the EMA model. So I wonder is it used in this work? If it is actually used, why should we evaluate by the EMA model rather than the original one?

    opened by JacobYuan7 4
  • one of the variables needed for gradient computation has been modified by an inplace operation

    one of the variables needed for gradient computation has been modified by an inplace operation

    RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.LongTensor [2, 20]] is at version 3; expected version 2 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).

    This error will terminate the training procedure when training mdef_detr using the PyTorch environment as you advise(torch==1.8.0+cu111).

    And I found the variables of 'transformer.text_encoder.pooler.dense.weight' does not have grad. This may be the main reason for this error.

    opened by xushilin1 2
  • Loading the Faster RCNN checkpoint

    Loading the Faster RCNN checkpoint

    Greetings

    The readme states: (Feb 01, 2022) Training codes for MDef-DETR and MDef-DETR minus Language models are released -> training/README.md Instructions to use class-agnostic object detection behavior of MDef-DETR on different applications are released -> applications/README.md All the pretrained models (MDef-DETR, Def-DETR, MDETR, DETReg, Faster-RCNN, RetinaNet, ORE, and others), along with the instructions to reproduce the results are released -> this link

    Following the link to the google drive, only provides me with the model weight for the Faster-RCNN, but not with instructions on how to load it and which framework to use. I have tried creating a Faster-RCNN-resnet101 model with pytorch, but when I load the model weight, it states that the layer names does not match. Any guidance would be much appreciated.

    Best regards Martin

    uni-modal-detectors 
    opened by MartinPedersenpp 2
  • Need to understand how to import weights

    Need to understand how to import weights

    Hello,

    Firstly, I'd like to congratulate you for bringing this amazing work. Class agnostic object detection is much needed currently in the industry and this would be a great way to solve the problem.

    I wanted to test your model on some custom data. However, I cannot import pre-trained weights from the link you have provided. I can see the zip file but I couldn't find a way to import them. I'm using OpenCV to import weights. It is asking me to have a config file as well as .weights file.

    Could you please help me which library to use to import weights when I'm working on a jupyter notebook?

    Thank you,

    opened by abhi-vellala 2
  • pretrain data download

    pretrain data download

    if is it possible to split pretrain data into multiple seperate zip files。 I download data from google drive : https://drive.google.com/drive/folders/1-3kAsyZIVFbNelRXrF93Y5tMgOypv2jV i cannot download this data because of google drive time limit(less than 1 hours) and my limit network bandwidth。

    documentation 
    opened by zhouxingguang 1
  • Training code release

    Training code release

    This pull request adds

    • Training codes for MDef-DETR and MDef-DETR minus Language models
    • Instructions to use class-agnostic object detection behavior of MDef-DETR on different applications
    • All the pre-trained models (MDef-DETR, Def-DETR, MDETR, DETReg, Faster-RCNN, RetinaNet, ORE, and others), along with the instructions to reproduce the results
    opened by mmaaz60 0
  • Questions about your training procedure?

    Questions about your training procedure?

    To my understanding, I think you use image-text pairs as inputs and only bbox annotations as supervision signals without any class labels, does it right?

    opened by GYslchen 1
  • Questions about your pretrained model

    Questions about your pretrained model

    Does the pre-trained model you provide cover the categories on LVIS data? If I want to do open-world object detection on the LVIS dataset, can I directly use your pre-trained model to generate the proposals or should I need to filter the dataset so that it doesn't contain any object in the LVIS dataset?

    opened by chengsilin 1
  • how to generate 'tokens_positive'  ann from detector dataset like object365?

    how to generate 'tokens_positive' ann from detector dataset like object365?

    I found 'tokens_positive' was used in your ann file. could you please release the code of how to process detect data like coco to get the 'tokens_positive' ann results?

    documentation 
    opened by zhouxingguang 1
Releases(v1.0)
  • v1.0(Feb 1, 2022)

    • Training codes for MDef-DETR and MDef-DETR minus Language models are released -> training/README.md
    • Instructions to use class-agnostic object detection behavior of MDef-DETR on different applications are released -> applications/README.md
    • All the pretrained models (MDef-DETR, Def-DETR, MDETR, DETReg, Faster-RCNN, RetinaNet, ORE, and others), along with the instructions to reproduce the results are released -> this link
    Source code(tar.gz)
    Source code(zip)
  • v0.1(Nov 25, 2021)

    Evaluation Code & Pre-trained Models

    • Releases evaluation code for MDef-DETR and 'MDef-DETR w/o Language Branch' model
    • Releases the pre-trained weights for both models
    • Releases the pre-computed predictions for both the models
    Source code(tar.gz)
    Source code(zip)
Owner
Muhammad Maaz
An Electrical Engineer with experience in Computer Vision software development. Skilled in Machine Learning, Deep Learning and Computer Vision.
Muhammad Maaz
基于AlphaPose的TensorRT加速

1. Requirements CUDA 11.1 TensorRT 7.2.2 Python 3.8.5 Cython PyTorch 1.8.1 torchvision 0.9.1 numpy 1.17.4 (numpy版本过高会出报错 this issue ) python-package s

52 Dec 06, 2022
Keras-tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation(Unfinished)

Keras-FCN Fully convolutional networks and semantic segmentation with Keras. Models Models are found in models.py, and include ResNet and DenseNet bas

645 Dec 29, 2022
Pytorch code for semantic segmentation using ERFNet

ERFNet (PyTorch version) This code is a toolbox that uses PyTorch for training and evaluating the ERFNet architecture for semantic segmentation. For t

Edu 394 Jan 01, 2023
arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

Andrej 671 Dec 31, 2022
StellarGraph - Machine Learning on Graphs

StellarGraph Machine Learning Library StellarGraph is a Python library for machine learning on graphs and networks. Table of Contents Introduction Get

S T E L L A R 2.6k Jan 05, 2023
Self-training with Weak Supervision (NAACL 2021)

This repo holds the code for our weak supervision framework, ASTRA, described in our NAACL 2021 paper: "Self-Training with Weak Supervision"

Microsoft 148 Nov 20, 2022
Fully convolutional deep neural network to remove transparent overlays from images

Fully convolutional deep neural network to remove transparent overlays from images

Marc Belmont 1.1k Jan 06, 2023
Source code for our paper "Do Not Trust Prediction Scores for Membership Inference Attacks"

Do Not Trust Prediction Scores for Membership Inference Attacks Abstract: Membership inference attacks (MIAs) aim to determine whether a specific samp

<a href=[email protected]"> 3 Oct 25, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

VITA 112 Nov 07, 2022
custom pytorch implementation of MoCo v3

MoCov3-pytorch custom implementation of MoCov3 [arxiv]. I made minor modifications based on the official MoCo repository [github]. No ViT part code an

39 Nov 14, 2022
Vision Deep-Learning using Tensorflow, Keras.

Welcome! I am a computer vision deep learning developer working in Korea. This is my blog, and you can see everything I've studied here. https://www.n

kimminjun 6 Dec 14, 2022
Implementation of Wasserstein adversarial attacks.

Stronger and Faster Wasserstein Adversarial Attacks Code for Stronger and Faster Wasserstein Adversarial Attacks, appeared in ICML 2020. This reposito

21 Oct 06, 2022
A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks

SVHNClassifier-PyTorch A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks If

Potter Hsu 182 Jan 03, 2023
Simple and ready-to-use tutorials for TensorFlow

TensorFlow World To support maintaining and upgrading this project, please kindly consider Sponsoring the project developer. Any level of support is a

Amirsina Torfi 4.5k Dec 23, 2022
The Hailo Model Zoo includes pre-trained models and a full building and evaluation environment

Hailo Model Zoo The Hailo Model Zoo provides pre-trained models for high-performance deep learning applications. Using the Hailo Model Zoo you can mea

Hailo 50 Dec 07, 2022
Federated Learning Based on Dynamic Regularization

Federated Learning Based on Dynamic Regularization This is implementation of Federated Learning Based on Dynamic Regularization. Requirements Please i

39 Jan 07, 2023
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection, CVPR 2021. Installation A Linux pla

Tianning Yuan 269 Dec 21, 2022
[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators

AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi

Microsoft 22 Sep 15, 2022
People Interaction Graph

Gihan Jayatilaka*, Jameel Hassan*, Suren Sritharan*, Janith Senananayaka, Harshana Weligampola, et. al., 2021. Holistic Interpretation of Public Scenes Using Computer Vision and Temporal Graphs to Id

University of Peradeniya : COVID Research Group 1 Aug 24, 2022
这是一个deeplabv3-plus-pytorch的源码,可以用于训练自己的模型。

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 训练步骤

Bubbliiiing 350 Dec 28, 2022