Code for "Unsupervised Layered Image Decomposition into Object Prototypes" paper

Overview

DTI-Sprites

Pytorch implementation of "Unsupervised Layered Image Decomposition into Object Prototypes" paper

Check out our paper and webpage for details!

teaser.jpg

If you find this code useful in your research, please cite:

@article{monnier2021dtisprites,
  title={{Unsupervised Layered Image Decomposition into Object Prototypes}},
  author={Monnier, Tom and Vincent, Elliot and Ponce, Jean and Aubry, Mathieu},
  journal={arXiv},
  year={2021},
}

Installation ๐Ÿ‘ท

1. Create conda environment

conda env create -f environment.yml
conda activate dti-sprites

Optional: some monitoring routines are implemented, you can use them by specifying the visdom port in the config file. You will need to install visdom from source beforehand

git clone https://github.com/facebookresearch/visdom
cd visdom && pip install -e .

2. Download non-torchvision datasets

./download_data.sh

This command will download following datasets:

  • Tetrominoes, Multi-dSprites and CLEVR6 (link to the original repo multi-object datasets with raw tfrecords)
  • GTSRB (link to the original dataset page)
  • Weizmann Horse database (link to the original dataset page)
  • Instagram collections associated to #santaphoto and #weddingkiss (link to the original repo with datasets links and descriptions)

NB: it may happen that gdown hangs, if so you can download them by hand with following gdrive links, unzip and move them to the datasets folder:

How to use ๐Ÿš€

1. Launch a training

cuda=gpu_id config=filename.yml tag=run_tag ./pipeline.sh

where:

  • gpu_id is a target cuda device id,
  • filename.yml is a YAML config located in configs folder,
  • run_tag is a tag for the experiment.

Results are saved at runs/${DATASET}/${DATE}_${run_tag} where DATASET is the dataset name specified in filename.yml and DATE is the current date in mmdd format. Some training visual results like sprites evolution and reconstruction examples will be saved. Here is an example from Tetrominoes dataset:

Reconstruction examples

tetro_rec.gif

Sprites evolution and final

tetro_sprites.gif

tetro_sprites_final.png

More visual results are available at https://imagine.enpc.fr/~monniert/DTI-Sprites/extra_results/.

2. Reproduce our quantitative results

To launch 5 runs on Tetrominoes benchmark and reproduce our results:

cuda=gpu_id config=tetro.yml tag=default ./multi_pipeline.sh

Available configs are:

  • Multi-object benchmarks: tetro.yml, dpsrites_gray.yml, clevr6.yml
  • Clustering benchmarks: gtsrb8.yml, svhn.yml
  • Cosegmentation dataset: horse.yml

3. Reproduce our qualitative results on Instagram collections

  1. (skip if already downloaded with script above) Create a santaphoto dataset by running process_insta_santa.sh script. It can take a while to scrape the 10k posts from Instagram.
  2. Launch training with cuda=gpu_id config=instagram.yml tag=santaphoto ./pipeline.sh

That's it!

Top 8 sprites discovered

santa_sprites.jpg

Decomposition examples

santa_rec.jpg

Further information

If you like this project, please check out related works on deep transformations from our group:

Official implementation of VQ-Diffusion

Vector Quantized Diffusion Model for Text-to-Image Synthesis Overview This is the official repo for the paper: [Vector Quantized Diffusion Model for T

Microsoft 592 Jan 03, 2023
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

selfcontact This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] It includes the main function

Lea Mรผller 68 Dec 06, 2022
Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches

CoMIR: Contrastive Multimodal Image Representation for Registration Framework ๐Ÿ–ผ Registration of images in different modalities with Deep Learning ๐Ÿค–

Methods for Image Data Analysis - MIDA 55 Dec 09, 2022
Stacked Generative Adversarial Networks

Stacked Generative Adversarial Networks This repository contains code for the paper "Stacked Generative Adversarial Networks", CVPR 2017. Part of the

Xun Huang 241 May 07, 2022
Official Code Implementation of the paper : XAI for Transformers: Better Explanations through Conservative Propagation

Official Code Implementation of The Paper : XAI for Transformers: Better Explanations through Conservative Propagation For the SST-2 and IMDB expermin

Ameen Ali 23 Dec 30, 2022
[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

Rex Cheng 364 Jan 03, 2023
A smaller subset of 10 easily classified classes from Imagenet, and a little more French

Imagenette ๐ŸŽถ Imagenette, gentille imagenette, Imagenette, je te plumerai. ๐ŸŽถ (Imagenette theme song thanks to Samuel Finlayson) NB: Versions of Image

fast.ai 718 Jan 01, 2023
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
[CVPR 2021] A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts

Visual-Reasoning-eXplanation [CVPR 2021 A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts] Project Page | Vid

Andy_Ge 54 Dec 21, 2022
Outlier Exposure with Confidence Control for Out-of-Distribution Detection

OOD-detection-using-OECC This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution De

Nazim Shaikh 64 Nov 02, 2022
[3DV 2021] A Dataset-Dispersion Perspective on Reconstruction Versus Recognition in Single-View 3D Reconstruction Networks

dispersion-score Official implementation of 3DV 2021 Paper A Dataset-dispersion Perspective on Reconstruction versus Recognition in Single-view 3D Rec

Yefan 7 May 28, 2022
House3D: A Rich and Realistic 3D Environment

House3D: A Rich and Realistic 3D Environment Yi Wu, Yuxin Wu, Georgia Gkioxari and Yuandong Tian House3D is a virtual 3D environment which consists of

Meta Research 1.1k Dec 14, 2022
Using deep learning to predict gene structures of the coding genes in DNA sequences of Arabidopsis thaliana

DeepGeneAnnotator: A tool to annotate the gene in the genome The master thesis of the "Using deep learning to predict gene structures of the coding ge

Ching-Tien Wang 3 Sep 09, 2022
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

607 Dec 31, 2022
A curated list of long-tailed recognition resources.

Awesome Long-tailed Recognition A curated list of long-tailed recognition and related resources. Please feel free to pull requests or open an issue to

Zhiwei ZHANG 542 Jan 01, 2023
This is the formal code implementation of the CVPR 2022 paper 'Federated Class Incremental Learning'.

Official Pytorch Implementation for GLFC [CVPR-2022] Federated Class-Incremental Learning This is the official implementation code of our paper "Feder

Race Wang 57 Dec 27, 2022
Official repository for "Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring".

RNN-MBP Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring (AAAI-2022) by Chao Zhu, Hang Dong, Jinshan Pan

SIV-LAB 22 Aug 31, 2022
CVPRW 2021: How to calibrate your event camera

E2Calib: How to Calibrate Your Event Camera This repository contains code that implements video reconstruction from event data for calibration as desc

Robotics and Perception Group 104 Nov 16, 2022
Interactive Terraform visualization. State and configuration explorer.

Rover - Terraform Visualizer Rover is a Terraform visualizer. In order to do this, Rover: generates a plan file and parses the configuration in the ro

Tu Nguyen 2.3k Jan 07, 2023
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

J K Terry 32 Nov 09, 2021