A plug-and-play library for neural networks written in Python

Overview

Synapses

A plug-and-play library for neural networks written in Python!

# run
pip install synapses-py==7.4.1
# in the directory of your project

Neural Network

Create a neural network

Import Synapses, call NeuralNetwork.init and provide the size of each layer.

from synapses_py import NeuralNetwork, ActivationFunction, DataPreprocessor, Statistics
layers = [4, 6, 5, 3]
neuralNetwork = NeuralNetwork.init(layers)

neuralNetwork has 4 layers. The first layer has 4 input nodes and the last layer has 3 output nodes. There are 2 hidden layers with 6 and 5 neurons respectively.

Get a prediction

inputValues = [1.0, 0.5625, 0.511111, 0.47619]
prediction = \
        NeuralNetwork.prediction(neuralNetwork, inputValues)

prediction should be something like [ 0.8296, 0.6996, 0.4541 ].

Note that the lengths of inputValues and prediction equal to the sizes of input and output layers respectively.

Fit network

learningRate = 0.5
expectedOutput = [0.0, 1.0, 0.0]
fitNetwork = \
        NeuralNetwork.fit(
            neuralNetwork,
            learningRate,
            inputValues,
            expectedOutput
        )

fitNetwork is a new neural network trained with a single observation.

To train a neural network, you should fit with multiple datapoints

Create a customized neural network

The activation function of the neurons created with NeuralNetwork.init, is a sigmoid one. If you want to customize the activation functions and the weight distribution, call NeuralNetwork.customizedInit.

def activationF(layerIndex):
    if layerIndex == 0:
        return ActivationFunction.sigmoid
    elif layerIndex == 1:
        return ActivationFunction.identity
    elif layerIndex == 2:
        return ActivationFunction.leakyReLU
    else:
        return ActivationFunction.tanh

def weightInitF(_layerIndex):
    return 1.0 - 2.0 * random()

customizedNetwork = \
        NeuralNetwork.customizedInit(
            layers,
            activationF,
            weightInitF
        )

Visualization

Call NeuralNetwork.toSvg to take a brief look at its svg drawing.

Network Drawing

The color of each neuron depends on its activation function while the transparency of the synapses depends on their weight.

svg = NeuralNetwork.toSvg(customizedNetwork)

Save and load a neural network

JSON instances are compatible across platforms! We can generate, train and save a neural network in Python and then load and make predictions in Javascript!

toJson

Call NeuralNetwork.toJson on a neural network and get a string representation of it. Use it as you like. Save json in the file system or insert into a database table.

json = NeuralNetwork.toJson(customizedNetwork)

ofJson

loadedNetwork = NeuralNetwork.ofJson(json)

As the name suggests, NeuralNetwork.ofJson turns a json string into a neural network.

Encoding and decoding

One hot encoding is a process that turns discrete attributes into a list of 0.0 and 1.0. Minmax normalization scales continuous attributes into values between 0.0 and 1.0. You can use DataPreprocessor for datapoint encoding and decoding.

The first parameter of DataPreprocessor.init is a list of tuples (attributeName, discreteOrNot).

setosaDatapoint = {
    "petal_length": "1.5",
    "petal_width": "0.1",
    "sepal_length": "4.9",
    "sepal_width": "3.1",
    "species": "setosa"
}

versicolorDatapoint = {
    "petal_length": "3.8",
    "petal_width": "1.1",
    "sepal_length": "5.5",
    "sepal_width": "2.4",
    "species": "versicolor"
}

virginicaDatapoint = {
    "petal_length": "6.0",
    "petal_width": "2.2",
    "sepal_length": "5.0",
    "sepal_width": "1.5",
    "species": "virginica"
}

datasetList = [ setosaDatapoint,
                versicolorDatapoint,
                virginicaDatapoint ]

dataPreprocessor = \
        DataPreprocessor.init(
             [ ("petal_length", False),
               ("petal_width", False),
               ("sepal_length", False),
               ("sepal_width", False),
               ("species", True) ],
             iter(datasetList)
        )

encodedDatapoints = map(lambda x:
        DataPreprocessor.encodedDatapoint(dataPreprocessor, x),
        datasetList
)

encodedDatapoints equals to:

[ [ 0.0     , 0.0     , 0.0     , 1.0     , 0.0, 0.0, 1.0 ],
  [ 0.511111, 0.476190, 1.0     , 0.562500, 0.0, 1.0, 0.0 ],
  [ 1.0     , 1.0     , 0.166667, 0.0     , 1.0, 0.0, 0.0 ] ]

Save and load the preprocessor by calling DataPreprocessor.toJson and DataPreprocessor.ofJson.

Evaluation

To evaluate a neural network, you can call Statistics.rootMeanSquareError and provide the expected and predicted values.

expectedWithOutputValuesList = \
        [ ( [ 0.0, 0.0, 1.0], [ 0.0, 0.0, 1.0] ),
          ( [ 0.0, 0.0, 1.0], [ 0.0, 1.0, 1.0] ) ]

expectedWithOutputValuesIter = \
        iter(expectedWithOutputValuesList)

rmse = Statistics.rootMeanSquareError(
                        expectedWithOutputValuesIter
)
Owner
Dimos Michailidis
Dimos Michailidis
NeuralTalk is a Python+numpy project for learning Multimodal Recurrent Neural Networks that describe images with sentences.

#NeuralTalk Warning: Deprecated. Hi there, this code is now quite old and inefficient, and now deprecated. I am leaving it on Github for educational p

Andrej 5.3k Jan 07, 2023
Score refinement for confidence-based 3D multi-object tracking

Score refinement for confidence-based 3D multi-object tracking Our video gives a brief explanation of our Method. This is the official code for the pa

Cognitive Systems Research Group 47 Dec 26, 2022
Using deep actor-critic model to learn best strategies in pair trading

Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov

281 Dec 09, 2022
GANTheftAuto is a fork of the Nvidia's GameGAN

Description GANTheftAuto is a fork of the Nvidia's GameGAN, which is research focused on emulating dynamic game environments. The early research done

Harrison 801 Dec 27, 2022
[CVPR 2022] Official Pytorch code for OW-DETR: Open-world Detection Transformer

OW-DETR: Open-world Detection Transformer (CVPR 2022) [Paper] Akshita Gupta*, Sanath Narayan*, K J Joseph, Salman Khan, Fahad Shahbaz Khan, Mubarak Sh

Akshita Gupta 127 Dec 27, 2022
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles

GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles This repository contains a method to generate 3D conformer ensembles direct

127 Dec 20, 2022
Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker

Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker This is a full project of image segmentation using the model built with

Htin Aung Lu 1 Jan 04, 2022
The implementation of ICASSP 2020 paper "Pixel-level self-paced learning for super-resolution"

Pixel-level Self-Paced Learning for Super-Resolution This is an official implementaion of the paper Pixel-level Self-Paced Learning for Super-Resoluti

Elon Lin 41 Dec 15, 2022
The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformers Improves Systematic Generalization".

Codebase for learning control flow in transformers The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformer

Csordás Róbert 24 Oct 15, 2022
A Lightweight Hyperparameter Optimization Tool 🚀

Lightweight Hyperparameter Optimization 🚀 The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machin

136 Jan 08, 2023
Forecasting with Gradient Boosted Time Series Decomposition

ThymeBoost ThymeBoost combines time series decomposition with gradient boosting to provide a flexible mix-and-match time series framework for spicy fo

131 Jan 08, 2023
Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift

This repository contains the official code of OSTAR in "Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift" (ICLR 2022).

Matthieu Kirchmeyer 5 Dec 06, 2022
Doge-Prediction - Coding Club prediction ig

Doge-Prediction Coding Club prediction ig Basically: Create an application that

1 Jan 10, 2022
A memory-efficient implementation of DenseNets

efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses

Geoff Pleiss 1.4k Dec 25, 2022
Torch-ngp - A pytorch implementation of the hash encoder proposed in instant-ngp

HashGrid Encoder (WIP) A pytorch implementation of the HashGrid Encoder from ins

hawkey 1k Jan 01, 2023
StyleGAN - Official TensorFlow Implementation

StyleGAN — Official TensorFlow Implementation Picture: These people are not real – they were produced by our generator that allows control over differ

NVIDIA Research Projects 13.1k Jan 09, 2023
Code and data of the Fine-Grained R2R Dataset proposed in paper Sub-Instruction Aware Vision-and-Language Navigation

Fine-Grained R2R Code and data of the Fine-Grained R2R Dataset proposed in the EMNLP2020 paper Sub-Instruction Aware Vision-and-Language Navigation. C

YicongHong 34 Nov 15, 2022
Framework web SnakeServer.

SnakeServer - Framework Web 🐍 Documentação oficial do framework SnakeServer. Conteúdo Sobre Como contribuir Enviar relatórios de segurança Pull reque

Jaedson Silva 0 Jul 21, 2022
PConv-Keras - Unofficial implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions". Try at: www.fixmyphoto.ai

Partial Convolutions for Image Inpainting using Keras Keras implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions", https

Mathias Gruber 871 Jan 05, 2023
:fire: 2D and 3D Face alignment library build using pytorch

Face Recognition Detect facial landmarks from Python using the world's most accurate face alignment network, capable of detecting points in both 2D an

Adrian Bulat 6k Dec 31, 2022