CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

Overview

SMPLify-XMC

This repo is part of our project: On Self-Contact and Human Pose.
[Project Page] [Paper] [MPI Project Page]

Teaser SMPLify-XMC

License

Software Copyright License for non-commercial scientific research purposes. Please read carefully the following terms and conditions and any accompanying documentation before you download and/or use the TUCH data and software, (the "Data & Software"), including 3D meshes, images, videos, textures, software, scripts, and animations. By downloading and/or using the Data & Software (including downloading, cloning, installing, and any other use of the corresponding github repository), you acknowledge that you have read these terms and conditions, understand them, and agree to be bound by them. If you do not agree with these terms and conditions, you must not download and/or use the Data & Software. Any infringement of the terms of this agreement will automatically terminate your rights under this License.

Description and Demo

SMPLify-XMC adapts SMPLify-X to fit SMPL-X model to Mimic The Pose (MTP) data. To run SMPLify-XMC you need

  • an image of a person mimicking a presented pose
  • the presented pose parameters
  • the person's gender, height and weight
  • the OpenPose keypoints.

The code has been tested with Python 3.6.9, CUDA 10.1, CuDNN 7.5 and PyTorch 1.8.1 on Ubuntu 18.04.

Installation

1) Clone this repo

git clone [email protected]:muelea/smplify-xmc.git
cd smplify-xmc

2) Download body model

Download them SMPL-X body model from https://smpl-x.is.tue.mpg.de and save it in MODEL_FOLDER. You can replace model_folder: MODEL_FOLDER in the config file configs/fit_smplx_singleview.yaml or use an environment variable.

3) Download essentials

Download essentials from here and unpack to ESSENTIALS_DIR. Then create symlinks between the essentials and this repo:

ln -s $ESSENTIALS_DIR/smplify-xmc-essentials data/essentials

4) Create python virtual environment

python3 -m venv $YOUR_VENV_DIR/smplify-xmc
source $YOUR_VENV_DIR/smplify-xmc/bin/activate

5) Install requirements

pip install -r requirements.txt

6) Get dependencies

Clone self-contact repo, e.g. to YOUR_PYTHON_PACKAGE_DIR. Then use pip to install the package. Then you can import the self-contact functions from any place in your system. (make sure your venv is activated).

cd $YOUR_PYTHON_PACKAGE_DIR
git clone [email protected]:muelea/selfcontact.git
cd selfcontact
rm -r .git
pip install .
cd ..

Demo using our example data

You can find our example dataset in this repo under data/example_input. The following command will automatically save parameters, mesh, and image under output_dir:

python main_singleview.py --config configs/fit_smplx_singleview.yaml \
--dataset mtp_demo \
--input_base_dir data/example_input/singleview/subject1 \
--input_dir_poses data/example_input/presented_poses \
--output_dir data/example_output/singleview/subject1 \
--model_folder $MODELS_FOLDER

Process the MTP dataset:

Download MTP data from the TUCH website: https://tuch.is.tue.mpg.de and save the data in DS_DIR. You should now see a folder named $DS_DIR/mtp.

Read MTP data: python lib/dataextra/preprocess_mtp_mturk_dataset.py --ds_dir=$DS_DIR/mtp

Process the first item: python main_singleview.py --config configs/fit_smplx_singleview_mtp_dataset.yaml --db_file data/dbs/mtp_mturk.npz --output_dir data/example_output/mtp/ --model_folder=$MODEL_FOLDER --cluster_bs=1 --ds_start_idx=0

Process your own data:

Follow the structure of the example data in data/example_input. Create a folder PP_FOLDER for the presented poses:

PP_FOLDER
  ----pose_name1.pkl
  ----pose_name2.pkl

The pickle file should contain a dictionary with the pose parameters and the vertices. If you include the vertices ('v'), the vertices in contact will be computed automatically.

data = {
  'body_pose': ..
  'right_hand_pose': ..
  'left_hand_pose': ..
  'global_orient': ..
  'v': .. #vertices

}

Then create a folder MI_FOLDER for the mimicked images, following the structure below. Compute the keypoints for each image from OpenPose. The meta file should contain the gender, height and weight of the subject mimicking the pose.

MI_FOLDER
  ----subject_name1
    ----images
      ----pose_name1.png
      ----pose_name2.png
    ----keypoints
      ----pose_name1.json
      ----pose_name2.json
    ----meta.yaml

Finally, run the fitting code:

python main_singleview.py --config configs/fit_smplx_singleview.yaml \
--input_base_dir $MI_FOLDER/subject_name1 \
--input_dir_poses $PP_FOLDER \
--output_dir data/example_output/subject_name1

Citation

@inproceedings{Mueller:CVPR:2021,
  title = {On Self-Contact and Human Pose},
  author = {M{\"u}ller, Lea and Osman, Ahmed A. A. and Tang, Siyu and Huang, Chun-Hao P. and Black, Michael J.},
  booktitle = {Proceedings IEEE/CVF Conf.~on Computer Vision and Pattern Recogßnition (CVPR)},
  month = jun,
  year = {2021},
  doi = {},
  month_numeric = {6}
}

Acknowledgement

We thank Vassilis Choutas and Georgios Pavlakos for publishing the SMPLify-X code: https://github.com/vchoutas/smplify-x. This has allowed us to build our code on top of it and continue to use important features, such as the prior or optimization. Again, special thanks to Vassilis Choutas for his implementation of the generalized winding numbers and the measurements code. We also thank our data capture and admin team for their help with the extensive data collection on Mechanical Turk and in the Capture Hall. Many thanks to all subjects who contributed to this dataset in the scanner and on the Internet. Thanks to all PS members who proofread the script and did not understand it and the reviewers, who helped improving during the rebuttal. Lea Mueller and Ahmed A. A. Osman thank the International Max Planck Research School for Intelligent Systems (IMPRS-IS) for supporting them. We thank the wonderful PS department for their questions and support.

Contact

For questions, please contact [email protected]

For commercial licensing (and all related questions for business applications), please contact [email protected].

Owner
Lea Müller
PhD student in the Perceiving Systems Department at the Max Planck Institute for Intelligent Systems in Tübingen, Germany.
Lea Müller
a short visualisation script for pyvideo data

PyVideo Speakers A CLI that visualises repeat speakers from events listed in https://github.com/pyvideo/data Not terribly efficient, but you know. Ins

Katie McLaughlin 3 Nov 24, 2021
Portfolio Optimization and Quantitative Strategic Asset Allocation in Python

Riskfolio-Lib Quantitative Strategic Asset Allocation, Easy for Everyone. Description Riskfolio-Lib is a library for making quantitative strategic ass

Riskfolio 1.7k Jan 07, 2023
Deformable DETR is an efficient and fast-converging end-to-end object detector.

Deformable DETR: Deformable Transformers for End-to-End Object Detection.

2k Jan 05, 2023
Code for the ICCV2021 paper "Personalized Image Semantic Segmentation"

PSS: Personalized Image Semantic Segmentation Paper PSS: Personalized Image Semantic Segmentation Yu Zhang, Chang-Bin Zhang, Peng-Tao Jiang, Ming-Ming

张宇 15 Jul 09, 2022
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
Complete the code of prefix-tuning in low data setting

Prefix Tuning Note: 作者在论文中提到使用真实的word去初始化prefix的操作(Initializing the prefix with activations of real words,significantly improves generation)。我在使用作者提供的

Andrew Zeng 4 Jul 11, 2022
[ACMMM 2021 Oral] Enhanced Invertible Encoding for Learned Image Compression

InvCompress Official Pytorch Implementation for "Enhanced Invertible Encoding for Learned Image Compression", ACMMM 2021 (Oral) Figure: Our framework

96 Nov 30, 2022
Annotate datasets with a semi-trained or fully trained YOLOv5 model

YOLOv5 Auto Annotator Annotate datasets with a semi-trained or fully trained YOLOv5 model Prerequisites Ubuntu =20.04 Python =3.7 System dependencie

Akash James 3 May 14, 2022
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

deepbands 25 Dec 15, 2022
Extension to fastai for volumetric medical data

FAIMED 3D use fastai to quickly train fully three-dimensional models on radiological data Classification from faimed3d.all import * Load data in vari

Keno 26 Aug 22, 2022
Official implementation of the ICML2021 paper "Elastic Graph Neural Networks"

ElasticGNN This repository includes the official implementation of ElasticGNN in the paper "Elastic Graph Neural Networks" [ICML 2021]. Xiaorui Liu, W

liuxiaorui 34 Dec 04, 2022
This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of Coordinate Independent Convolutional Networks.

Orientation independent Möbius CNNs This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of

Maurice Weiler 59 Dec 09, 2022
Official code for the publication "HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder".

HyFactor Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce a novel open-source archit

Laboratoire-de-Chemoinformatique 11 Oct 10, 2022
PIXIE: Collaborative Regression of Expressive Bodies

PIXIE: Collaborative Regression of Expressive Bodies [Project Page] This is the official Pytorch implementation of PIXIE. PIXIE reconstructs an expres

Yao Feng 331 Jan 04, 2023
TensorFlow Tutorials with YouTube Videos

TensorFlow Tutorials Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction These tutorials are intended for beginne

9.1k Jan 02, 2023
[ACL 2022] LinkBERT: A Knowledgeable Language Model 😎 Pretrained with Document Links

LinkBERT: A Knowledgeable Language Model Pretrained with Document Links This repo provides the model, code & data of our paper: LinkBERT: Pretraining

Michihiro Yasunaga 264 Jan 01, 2023
[WACV21] Code for our paper: Samuel, Atzmon and Chechik, "From Generalized zero-shot learning to long-tail with class descriptors"

DRAGON: From Generalized zero-shot learning to long-tail with class descriptors Paper Project Website Video Overview DRAGON learns to correct the bias

Dvir Samuel 25 Dec 06, 2022
The full training script for Enformer (Tensorflow Sonnet) on TPU clusters

Enformer TPU training script (wip) The full training script for Enformer (Tensorflow Sonnet) on TPU clusters, in an effort to migrate the model to pyt

Phil Wang 10 Oct 19, 2022
Video Matting Refinement For Python

Video-matting refinement Library (use pip to install) scikit-image numpy av matplotlib Run Static background python path_to_video.mp4 Moving backgroun

3 Jan 11, 2022
All the essential resources and template code needed to understand and practice data structures and algorithms in python with few small projects to demonstrate their practical application.

Data Structures and Algorithms Python INDEX 1. Resources - Books Data Structures - Reema Thareja competitiveCoding Big-O Cheat Sheet DAA Syllabus Inte

Shushrut Kumar 129 Dec 15, 2022