Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Related tags

Deep Learningtutorial
Overview

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Jupyter Book Badge

About the book

This is a web book written for a tutorial session of the 22nd International Society for Music Information Retrieval Conference, Nov 8-12, 2021, in an online format. The ISMIR conference is the world’s leading research forum on processing, searching, organising and accessing music-related data.

Motivation

Lower the barrier: As deep learning emerges, music classification research has entered a new phase, and many data-driven approaches have been proposed to solve the problem. However, researchers sometimes use jargon in various ways. Also, some implementation details and evaluation methods are ambiguously described in the papers, blocking access to the information without personal contact. These are tremendous obstacles when new researchers want to dive into this fascinating research area. Through this book, we would like to lower the barrier for newcomers and reduce miscommunication between researchers by sharing the secrets.

Cope with data issue: Another issue that we are facing under the deep learning era is the exhaustion of labeled data. Labeling musical attributes requires strong domain knowledge and a significant amount of time for listening; hence expensive. Because of this, deep learning researchers started actively utilizing large-scale unlabeled data. This book introduces the recent advances in semi- and self-supervised learning that enables music classification models to step further beyond supervised learning.

Narrow the gap: Music classification has been applied to solve real-world problems successfully. However, some important procedures and considerations for real-world applications are rarely discussed as research topics. In this book, based on the various industry experiences of the authors, we try our best to raise the awareness of these questions and provide answers and perspectives. We hope this helps academia and industries harmonize better together.

About the authors

Minz Won is a Ph.D candidate at the Music Technology Group (MTG) of Universitat Pompeu Fabra in Barcelona, Spain. His research focus is music representation learning. Along with his academic career, he has put his knowledge into practice with industry internships at Kakao Corp., Naver Corp., Pandora, Adobe, and he recently joined ByteDance as a research scientist. He contributed to the winning entry in the WWW 2018 Challenge: Learning to Recognize Musical Genre.

Janne Spijkervet graduated from the University of Amsterdam in 2021 with her Master's thesis titled "Contrastive Learning of Musical Representations". The paper with the same title was published in 2020 on self-supervised learning on raw audio in music tagging. She has started at ByteDance as a research scientist (2020 - present), developing generative models for music creation. She is also a songwriter and music producer, and explores the design and use of machine learning technology in her music.

Keunwoo Choi is a senior research scientist at ByteDance, developing machine learning products for music recommendation and discovery. He received a Ph.D degree from Queen Mary University of London (c4dm) in 2018. As a researcher, he also has been working at Spotify (2018 - 2020) and several other music companies as well as open-source projects such as Kapre, librosa, and torchaudio. He also writes some music.

Citing this book

@book{musicclassification:book,
	Author = {Minz Won, Janne Spijkervet, and Keunwoo Choi},
	Month = Nov.,
	Publisher = {https://music-classification.github.io/tutorial},
	Title = {Music Classification: Beyond Supervised Learning, Towards Real-world Applications},
	Year = 2021,
	Url = {https://music-classification.github.io/tutorial}
}
On-device wake word detection powered by deep learning.

Porcupine Made in Vancouver, Canada by Picovoice Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening

Picovoice 2.8k Dec 29, 2022
A torch.Tensor-like DataFrame library supporting multiple execution runtimes and Arrow as a common memory format

TorchArrow (Warning: Unstable Prototype) This is a prototype library currently under heavy development. It does not currently have stable releases, an

Facebook Research 536 Jan 06, 2023
A PyTorch re-implementation of Neural Radiance Fields

nerf-pytorch A PyTorch re-implementation Project | Video | Paper NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis Ben Mildenhall

Krishna Murthy 709 Jan 09, 2023
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a building extraction plugin of QGIS based on PaddlePaddle. TODO Extract building on 512x512 remote sensing images. Extract build

Yizhou Chen 11 Sep 26, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Jan 02, 2023
This repository contains the code for our paper VDA (public in EMNLP2021 main conference)

Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models This repository contains the code for our paper VDA (publ

RUCAIBox 13 Aug 06, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Dec 31, 2022
Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand

Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand Introduction We propose a generalization of leaderboards, bidimensional leader

4 Dec 03, 2022
A large-scale benchmark for co-optimizing the design and control of soft robots, as seen in NeurIPS 2021.

Evolution Gym A large-scale benchmark for co-optimizing the design and control of soft robots. As seen in Evolution Gym: A Large-Scale Benchmark for E

121 Dec 14, 2022
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
House_prices_kaggle - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

Gurpreet Singh 1 Jan 01, 2022
Unofficial PyTorch implementation of "RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving" (ECCV 2020)

RTM3D-PyTorch The PyTorch Implementation of the paper: RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving (ECCV 2020

Nguyen Mau Dzung 271 Nov 29, 2022
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency

This repository contains the implementation for the paper: No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consiste

Alireza Golestaneh 75 Dec 30, 2022
The official homepage of the COCO-Stuff dataset.

The COCO-Stuff dataset Holger Caesar, Jasper Uijlings, Vittorio Ferrari Welcome to official homepage of the COCO-Stuff [1] dataset. COCO-Stuff augment

Holger Caesar 715 Dec 31, 2022
efficient neural audio synthesis in the waveform domain

neural waveshaping synthesis real-time neural audio synthesis in the waveform domain paper • website • colab • audio by Ben Hayes, Charalampos Saitis,

Ben Hayes 169 Dec 23, 2022
Official pytorch code for SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal

SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal This is the official pytorch code for SSAT: A Symmetric Semantic-

ForeverPupil 57 Dec 13, 2022
Simple Python application to transform Serial data into OSC messages

SerialToOSC-Bridge Simple Python application to transform Serial data into OSC messages. The current purpose is to be a compatibility layer between ha

Division of Applied Acoustics at Chalmers University of Technology 3 Jun 03, 2021
This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018

Learning-to-See-in-the-Dark This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018, by Chen Chen, Qifeng Chen, Jia Xu, and Vl

5.3k Jan 01, 2023
Writeups for the challenges from DownUnderCTF 2021

cloud Challenge Author Difficulty Release Round Bad Bucket Blue Alder easy round 1 Not as Bad Bucket Blue Alder easy round 1 Lost n Found Blue Alder m

DownUnderCTF 161 Dec 31, 2022
Code for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling Using BERT Adapter"

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

274 Dec 06, 2022