MUSIC-AVQA, CVPR2022 (ORAL)

Related tags

AudioMUSIC-AVQA
Overview

Audio-Visual Question Answering (AVQA)

PyTorch code accompanies our CVPR 2022 paper:

Learning to Answer Questions in Dynamic Audio-Visual Scenarios (Oral Presentation)

Guangyao Li, Yake Wei, Yapeng Tian, Chenliang Xu, Ji-Rong Wen and Di Hu

Resources: [Paper], [Supplementary], [Poster], [Video]

Project Homepage: https://gewu-lab.github.io/MUSIC-AVQA/


What's Audio-Visual Question Answering Task?

We focus on audio-visual question answering (AVQA) task, which aims to answer questions regarding different visual objects, sounds, and their associations in videos. The problem requires comprehensive multimodal understanding and spatio-temporal reasoning over audio-visual scenes.

MUSIC-AVQA Dataset

The large-scale MUSIC-AVQA dataset of musical performance, which contains 45,867 question-answer pairs, distributed in 9,288 videos for over 150 hours. All QA pairs types are divided into 3 modal scenarios, which contain 9 question types and 33 question templates. Finally, as an open-ended problem of our AVQA tasks, all 42 kinds of answers constitute a set for selection.

  • QA examples

Model Overview

To solve the AVQA problem, we propose a spatio-temporal grounding model to achieve scene understanding and reasoning over audio and visual modalities. An overview of the proposed framework is illustrated in below figure.

Requirements

python3.6 +
pytorch1.6.0
tensorboardX
ffmpeg
numpy

Usage

  1. Clone this repo

    https://github.com/GeWu-Lab/MUSIC-AVQA_CVPR2022.git
  2. Download data

    Annotations (QA pairs, etc.)

    • Available for download at here
    • The annotation files are stored in JSON format. Each annotation file contains seven different keyword. And more detail see in Project Homepage

    Features

    • We use VGGish, ResNet18, and ResNet (2+1)D to extract audio, 2D frame-level, and 3D snippet-level features, respectively.

    • The audio and visual features of videos in the MUSIC-AVQA dataset can be download from Baidu Drive (password: cvpr):

      • VGGish feature shape: [T, 128]  Download (112.7M)
      • ResNet18 feature shape: [T, 512]  Download (972.6M)
      • R(2+1)D feature shape: [T, 512]  Download (973.9M)
    • The features are in the ./data/feats folder.

    • 14x14 features, too large to share ... but we can extract from raw video frames.

    Download videos frames

    • Raw videos: Availabel at Baidu Drive (password: cvpr):.

      Note: Please move all downloaded videos to a folder, for example, create a new folder named MUSIC-AVQA-Videos, which contains 9,288 real videos and synthetic videos.

    • Raw video frames (1fps): Available at Baidu Drive (14.84GB) (password: cvpr).

    • Download raw videos in the MUSIC-AVQA dataset. The downloaded videos will be in the /data/video folder.

    • Pandas and ffmpeg libraries are required.

  3. Data pre-processing

    Extract audio waveforms from videos. The extracted audios will be in the ./data/audio folder. moviepy library is used to read videos and extract audios.

    python feat_script/extract_audio_cues/extract_audio.py	

    Extract video frames from videos. The extracted frames will be in the data/frames folder.

    python feat_script/extract_visual_frames/extract_frames_adaptive_script.py
  4. Feature extraction

    Audio feature. TensorFlow1.4 and VGGish pretrained on AudioSet is required. Feature file also can be found from here (password: cvpr).

    python feat_script/extract_audio_feat/audio_feature_extractor.py

    2D visual feature. Pretrained models library is required.

    python feat_script/eatract_visual_feat/extract_rgb_feat.py

    3D visual feature.

    python feat_script/eatract_visual_feat/extract_3d_feat.py

    14x14 visual feature.

    python feat_script/extract_visual_feat_14x14/extract_14x14_feat.py
  5. Baseline Model

    Training

    python net_grd_baseline/main_qa_grd_baseline.py --mode train

    Testing

    python net_grd_baseline/main_qa_grd_baseline.py --mode test
  6. Our Audio-Visual Spatial-Temporal Model

    We provide trained models and you can quickly test the results. Test results may vary slightly on different machines.

    python net_grd_avst/main_avst.py --mode train \
    	--audio_dir = "path to your audio features"
    	--video_res14x14_dir = "path to your visual res14x14 features"

    Audio-Visual grounding generation

    python grounding_gen/main_grd_gen.py

    Training

    python net_grd_avst/main_avst.py --mode train \
    	--audio_dir = "path to your audio features"
    	--video_res14x14_dir = "path to your visual res14x14 features"

    Testing

    python net_grd_avst/main_avst.py --mode test \
    	--audio_dir = "path to your audio features"
    	--video_res14x14_dir = "path to your visual res14x14 features"

Results

  1. Audio-visual video question answering results of different methods on the test set of MUSIC-AVQA. The top-2 results are highlighted. Please see the citations in the [Paper] for comparison methods.

  2. Visualized spatio-temporal grounding results

    We provide several visualized spatial grounding results. The heatmap indicates the location of sounding source. Through the spatial grounding results, the sounding objects are visually captured, which can facilitate the spatial reasoning.

    Firstly, ./grounding_gen/models_grd_vis/ should be created.

    python grounding_gen/main_grd_gen_vis.py

Citation

If you find this work useful, please consider citing it.


@ARTICLE{Li2022Learning,
  title	= {Learning to Answer Questions in Dynamic Audio-Visual Scenarios},
  author	= {Guangyao li, Yake Wei, Yapeng Tian, Chenliang Xu, Ji-Rong Wen, Di Hu},
  journal	= {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year	= {2022},
}

Acknowledgement

This research was supported by Public Computing Cloud, Renmin University of China.

License

This project is released under the GNU General Public License v3.0.

This is a python package that turns any images into MIDI files that views the same as them

image_to_midi This is a python package that turns any images into MIDI files that views the same as them. This package firstly convert the image to AS

Rainbow Dreamer 4 Mar 10, 2022
Library for Python 3 to communicate with the Google Chromecast.

pychromecast Library for Python 3.6+ to communicate with the Google Chromecast. It currently supports: Auto discovering connected Chromecasts on the n

Home Assistant Libraries 2.4k Jan 02, 2023
Analysis of voices based on the Mel-frequency band

Speaker_partition_module Analysis of voices based on the Mel-frequency band. Goal: Identification of voices speaking (diarization) and calculation of

1 Feb 06, 2022
MelGAN test on audio decoding

Official repository for the paper MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis The original work URL: https://github.com

Jurio 1 Apr 29, 2022
DeepSpeech is an open source embedded (offline, on-device) speech-to-text engine which can run in real time on devices ranging from a Raspberry Pi 4 to high power GPU servers.

Project DeepSpeech DeepSpeech is an open-source Speech-To-Text engine, using a model trained by machine learning techniques based on Baidu's Deep Spee

Mozilla 20.8k Jan 03, 2023
XA Music Player - Telegram Music Bot

XA Music Player Requirements ๐Ÿ“ FFmpeg (Latest) NodeJS nodesource.com (NodeJS 17+) Python (3.10+) PyTgCalls (Lastest) MongoDB (3.12.1) 2nd Telegram Ac

RexAshh 3 Jun 30, 2022
This is a short program that takes the input from your microphone and uses OpenGL to draw a live colourful pattern

Visual-Music This is a short program that takes the input from your microphone and uses OpenGL to draw a live colourful pattern Installation and Setup

Tom Jebbo 1 Dec 26, 2021
Terminal-based music player written in Python for the best music in the world ๐ŸŽต ๐ŸŽง ๐Ÿ’ป

audius-terminal-player Terminal-based music player written in Python for the best music in the world ๐ŸŽต ๐ŸŽง ๐Ÿ’ป Browse and listen to Audius from the com

Audius 21 Jul 23, 2022
Real-Time Spherical Microphone Renderer for binaural reproduction in Python

ReTiSAR Implementation of the Real-Time Spherical Microphone Renderer for binaural reproduction in Python [1][2]. Contents: | Requirements | Setup | Q

Division of Applied Acoustics at Chalmers University of Technology 51 Dec 17, 2022
A Python wrapper around the Soundcloud API

soundcloud-python A friendly wrapper around the Soundcloud API. Installation To install soundcloud-python, simply: pip install soundcloud Or if you'r

SoundCloud 84 Dec 31, 2022
Stream Music ๐ŸŽต ๐˜ผ ๐™—๐™ค๐™ฉ ๐™ฉ๐™๐™–๐™ฉ ๐™˜๐™–๐™ฃ ๐™ฅ๐™ก๐™–๐™ฎ ๐™ข๐™ช๐™จ๐™ž๐™˜ ๐™ค๐™ฃ ๐™๐™š๐™ก๐™š๐™œ๐™ง๐™–๐™ข ๐™‚๐™ง๐™ค๐™ช๐™ฅ ๐™–๐™ฃ๐™™ ๐˜พ๐™๐™–๐™ฃ๐™ฃ๐™š๐™ก ๐™‘๐™ค๐™ž๐™˜๐™š ๐˜พ๐™๐™–๐™ฉ๐™จ ๐˜ผ๐™ซ๐™–๐™ž๐™ก?

Stream Music ๐ŸŽต ๐˜ผ ๐™—๐™ค๐™ฉ ๐™ฉ๐™๐™–๐™ฉ ๐™˜๐™–๐™ฃ ๐™ฅ๐™ก๐™–๐™ฎ ๐™ข๐™ช๐™จ๐™ž๐™˜ ๐™ค๐™ฃ ๐™๐™š๐™ก๐™š๐™œ๐™ง๐™–๐™ข ๐™‚๐™ง๐™ค๐™ช๐™ฅ ๐™–๐™ฃ๐™™ ๐˜พ๐™๐™–๐™ฃ๐™ฃ๐™š๐™ก ๐™‘๐™ค๐™ž๐™˜๐™š ๐˜พ๐™๐™–๐™ฉ๐™จ ๐˜ผ๐™ซ๐™–๐™ž๐™ก?

Sadew Jayasekara 15 Nov 12, 2022
A python library for working with praat, textgrids, time aligned audio transcripts, and audio files.

praatIO Questions? Comments? Feedback? A library for working with praat, time aligned audio transcripts, and audio files that comes with batteries inc

Tim 224 Dec 19, 2022
Sequencer: Deep LSTM for Image Classification

Sequencer: Deep LSTM for Image Classification Created by Yuki Tatsunami Masato Taki This repository contains implementation for Sequencer. Abstract In

Yuki Tatsunami 111 Dec 16, 2022
Python tools for the corpus analysis of popular music.

CATCHY Corpus Analysis Tools for Computational Hook discovery Python tools for the corpus analysis of popular music recordings. The tools can be used

Jan VB 20 Aug 20, 2022
voice assistant made with python that search for covid19 data(like total cases, deaths and etc) in a specific country

covid19-voice-assistant voice assistant made with python that search for covid19 data(like total cases, deaths and etc) in a specific country installi

Miguel 2 Dec 05, 2021
In this project we can see how we can generate automatic music using character RNN.

Automatic Music Genaration Table of Contents Project Description Approach towards the problem Limitations Libraries Used Summary Applications Referenc

Pronay Ghosh 2 May 27, 2022
Converting UGG files from Rode Wireless Go II transmitters (unsompressed recordings) to WAV format

Rode_WirelessGoII_UGG2wav Converting UGG files from Rode Wireless Go II transmitters (uncompressed recordings) to WAV format Story I backuped the .ugg

Jรกn Mazanec 31 Dec 22, 2022
A Python port and library-fication of the midicsv tool by John Walker.

A Python port and library-fication of the midicsv tool by John Walker. If you need to convert MIDI files to human-readable text files and back, this is the library for you.

Tim Wedde 52 Dec 29, 2022
Powerful, simple, audio tag editor for GNU/Linux

puddletag puddletag is an audio tag editor (primarily created) for GNU/Linux similar to the Windows program, Mp3tag. Unlike most taggers for GNU/Linux

341 Dec 26, 2022
praudio provides audio preprocessing framework for Deep Learning audio applications

praudio provides objects and a script for performing complex preprocessing operations on entire audio datasets with one command.

Valerio Velardo 105 Dec 26, 2022