My capstone project for Udacity's Machine Learning Nanodegree

Overview

MLND-Capstone

My capstone project for Udacity's Machine Learning Nanodegree

Lane Detection with Deep Learning

In this project, I use a deep learning-based approach to improve upon lane detection. My final model uses a fully convolutional neural network to output an image of a predicted lane.

Please see my final Capstone Project Report here.

Also, see my original capstone proposal here.

Lastly, check out the wiki page in this repository to see some more of my steps along the way. The separate "early_steps" branch contains earlier code for previous versions of the neural network as well as files that can extract data for training and perform some automatic labeling.

See an early version of the model detecting lane lines with perspective transformed images here. An early version of my model trained without perspective transformed images, i.e. regular road images, can be seen here!

Lastly, with the finalized fully convolutional model, there are a couple additional videos I made. The first, which is the same video from the above two, has between 10-20% of the frames fed into the mode, as can be seen here. Additionally, a video made from the Challenge Video from Udacity's Advanced Lane Lines project in the SDCND, where the neural network had never seen the video before, can be seen here. The model performs fairly robustly on the never-before-seen video, with the only hitch due to the large light difference as it goes under the overpass.

An additional video can be seen at this Dropbox link.

Dataset

For fully convolutional network

You can download the full training set of images I used here and the full set of 'labels' (which are just the 'G' channel from an RGB image of a re-drawn lane with an extra dimension added to make use in Keras easier) here (157 MB).

Images with coefficient labels

If you just want the original training images with no flips or rotations (downsized to 80x160x3) you can find them here. You can also find the related coefficient labels (i.e. not the drawn lane labels, but the cofficients for a polynomial line) here.

Software Requirements

You can use this conda environment file. In the command line, use conda env create -f lane_environment.yml and then source activate lane_environment (or just activate with the environment name on Windows) to use the environment.

Key Files

Although I have included many of the python files I created to help process my images and various prototype neural networks in the "early_steps" branch, the key files are:

  • fully_conv_NN.py - Assuming you have downloaded the training images and labels above, this is the fully convolutional neural network to train using that data.
  • full_CNN_model.h5 - These are the final outputs from the above CNN. Note that if you train the file above the originals here will be overwritten! These get fed into the below.
  • draw_detected_lanes.py - Using the trained model and an input video, this predicts the lane, averages across 5 frames, and returns the original video with predicted lane lines drawn onto it. Note that it is currently set up to use the basic video from Udacity's SDCND Advanced Lane Lines project here, but the code at the end can be changed to accept different input videos.

Training Image Statistics

  • 21,054 total images gathered from 12 videos (a mix of different times of day, weather, traffic, and road curvatures)
  • 17.4% were clear night driving, 16.4% were rainy morning driving, and 66.2% were cloudy afternoon driving
  • 26.5% were straight or mostly straight roads, 30.2% were a mix or moderate curves, and 43.3% were very curvy roads
  • The roads also contain difficult areas such as construction and intersections
  • 14,235 of the total that were usable of those gathered (mainly due to blurriness, hidden lines, etc.)
  • 1,420 total images originally extracted from those to account for time series (1 in every 10)
  • 227 of the 1,420 unusable due to the limits of the CV-based model used to label (down from 446 due to various improvements made to the original model) for a total of 1,193 images
  • Another 568 images (of 1,636 pulled in) gathered from more curvy lines to assist in gaining a wider distribution of labels (1 in every 5 from the more curved-lane videos; from 8,187 frames)
  • In total, 1,761 original images
  • I pulled in the easier project video from Udacity's Advanced Lane Lines project (to help the model learn an additional camera's distortion) - of 1,252 frames, I used 1 in 5 for 250 total, 217 of which were usable for training
  • A total of 1,978 actual images used between my collections and the one Udacity video
  • After checking histograms for each coefficient of each label for distribution, I created an additional 4,404 images using small rotations of the images outside the very center of the original distribution of images. This was done in three rounds of slowly moving outward from the center of the data (so those further out from the center of the distribution were done multiple times). 6,382 images existed at this point.
  • Finally, I added horizontal flips of each and every road image and its corresponding label, which doubled the total images. All in all, there were a total of 12,764 images for training.
Owner
Michael Virgo
Software Engineer
Michael Virgo
Python module for data science and machine learning users.

dsnk-distributions package dsnk distribution is a Python module for data science and machine learning that was created with the goal of reducing calcu

Emmanuel ASIFIWE 1 Nov 23, 2021
Software Engineer Salary Prediction

Based on 2021 stack overflow data, this machine learning web application helps one predict the salary based on years of experience, level of education and the country they work in.

Jhanvi Mimani 1 Jan 08, 2022
Machine Learning Course with Python:

A Machine Learning Course with Python Table of Contents Download Free Deep Learning Resource Guide Slack Group Introduction Motivation Machine Learnin

Instill AI 6.9k Jan 03, 2023
Self Organising Map (SOM) for clustering of atomistic samples through unsupervised learning.

Self Organising Map for Clustering of Atomistic Samples - V2 Description Self Organising Map (also known as Kohonen Network) implemented in Python for

Franco Aquistapace 0 Nov 16, 2021
This repo includes some graph-based CTR prediction models and other representative baselines.

Graph-based CTR prediction This is a repository designed for graph-based CTR prediction methods, it includes our graph-based CTR prediction methods: F

Big Data and Multi-modal Computing Group, CRIPAC 47 Dec 30, 2022
SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker.

SageMaker Python SDK SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker. With the S

Amazon Web Services 1.8k Jan 01, 2023
SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow

SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow, in High Performance Computing (HPC) simulations and workloads.

This is a Machine Learning model which predicts the presence of Diabetes in Patients

Diabetes Disease Prediction This is a machine Learning mode which tries to determine if a person has a diabetes or not. Data The dataset is in comma s

Edem Gold 4 Mar 16, 2022
Library of Stan Models for Survival Analysis

survivalstan: Survival Models in Stan author: Jacki Novik Overview Library of Stan Models for Survival Analysis Features: Variety of standard survival

Hammer Lab 122 Jan 06, 2023
[HELP REQUESTED] Generalized Additive Models in Python

pyGAM Generalized Additive Models in Python. Documentation Official pyGAM Documentation: Read the Docs Building interpretable models with Generalized

daniel servén 747 Jan 05, 2023
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022
Conducted ANOVA and Logistic regression analysis using matplot library to visualize the result.

Intro-to-Data-Science Conducted ANOVA and Logistic regression analysis. Project ANOVA The main aim of this project is to perform One-Way ANOVA analysi

Chris Yuan 1 Feb 06, 2022
A simple python program which predicts the success of a movie based on it's type, actor, actress and director

Movie-Success-Prediction A simple python program which predicts the success of a movie based on it's type, actor, actress and director. The program us

Mahalinga Prasad R N 1 Dec 17, 2021
A machine learning project that predicts the price of used cars in the UK

Car Price Prediction Image Credit: AA Cars Project Overview Scraped 3000 used cars data from AA Cars website using Python and BeautifulSoup. Cleaned t

Victor Umunna 7 Oct 13, 2022
ClearML - Auto-Magical Suite of tools to streamline your ML workflow. Experiment Manager, MLOps and Data-Management

ClearML - Auto-Magical Suite of tools to streamline your ML workflow Experiment Manager, MLOps and Data-Management ClearML Formerly known as Allegro T

ClearML 4k Jan 09, 2023
Pandas Machine Learning and Quant Finance Library Collection

Pandas Machine Learning and Quant Finance Library Collection

148 Dec 07, 2022
Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet.

Horovod Horovod is a distributed deep learning training framework for TensorFlow, Keras, PyTorch, and Apache MXNet. The goal of Horovod is to make dis

Horovod 12.9k Jan 07, 2023
Can a machine learning project be implemented to estimate the salaries of baseball players whose salary information and career statistics for 1986 are shared?

END TO END MACHINE LEARNING PROJECT ON HITTERS DATASET Can a machine learning project be implemented to estimate the salaries of baseball players whos

Pinar Oner 7 Dec 18, 2021
Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Amplo 10 May 15, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023