A performant state estimator for power system

Overview

fastSE (power system state estimation)

PyPI pyversions PyPI version fury.io PyPI license

A performant state estimator for power system

sparse matrix + jit + klu + custom improved ordering + python = efficient in computation and development!

Installation

To install, simply run pip install fastSE in your command prompt.

How to use

Here is one simple example. solve_se_lm is a high-level function which computes derivatives, assemble them as sparse matrix and then calculate the estimates using sparse matrix solver. All the low-level functions could also be imported and used individually.

from fastse import solve_se_lm, bdd_validation, StateEstimationInput
from scipy.sparse import csr_matrix
import numpy as np

import time
# A 5 bus example from Prof. Overbye's textbook
# node impedance
Ybus = np.array([[3.729 - 49.720j, 0.000 + 0.000j, 0.000 + 0.000j,
        0.000 + 0.000j, -3.729 + 49.720j],
       [0.000 + 0.000j, 2.678 - 28.459j, 0.000 + 0.000j,
        -0.893 + 9.920j, -1.786 + 19.839j],
       [0.000 + 0.000j, 0.000 + 0.000j, 7.458 - 99.441j,
        -7.458 + 99.441j, 0.000 + 0.000j],
       [0.000 + 0.000j, -0.893 + 9.920j, -7.458 + 99.441j,
        11.922 - 147.959j, -3.571 + 39.679j],
       [-3.729 + 49.720j, -1.786 + 19.839j, 0.000 + 0.000j,
        -3.571 + 39.679j, 9.086 - 108.578j]])
Ybus = csr_matrix(Ybus)

# branch impedance
Yf = np.array([[ 3.729-49.720j,  0.000 +0.000j,  0.000 +0.000j,  0.000 +0.000j,
    -3.729+49.720j],
   [ 0.000 +0.000j, -0.893 +9.920j,  0.000 +0.000j,  0.893 -9.060j,
     0.000 +0.000j],
   [ 0.000 +0.000j, -1.786+19.839j,  0.000 +0.000j,  0.000 +0.000j,
     1.786-19.399j],
   [ 0.000 +0.000j,  0.000 +0.000j,  7.458-99.441j, -7.458+99.441j,
     0.000 +0.000j],
   [ 0.000 +0.000j,  0.000 +0.000j,  0.000 +0.000j, -3.571+39.679j,
     3.571-39.459j]])
Yf = csr_matrix(Yf)

Yt = np.array([[-3.729+49.720j,  0.000 +0.000j,  0.000 +0.000j,  0.000 +0.000j,
     3.729-49.720j],
   [ 0.000 +0.000j,  0.893 -9.060j,  0.000 +0.000j, -0.893 +9.920j,
     0.000 +0.000j],
   [ 0.000 +0.000j,  1.786-19.399j,  0.000 +0.000j,  0.000 +0.000j,
    -1.786+19.839j],
   [ 0.000 +0.000j,  0.000 +0.000j, -7.458+99.441j,  7.458-99.441j,
     0.000 +0.000j],
   [ 0.000 +0.000j,  0.000 +0.000j,  0.000 +0.000j,  3.571-39.459j,
    -3.571+39.679j]])
Yt = csr_matrix(Yt)

# branch from and to bus
f = np.array([0, 3, 4, 2, 4])
t = np.array([4, 1, 1, 3, 3])

# slack, pv and pq buses
slack = np.array([0])  # The slack bus does not have to be the 0-indexed bus
pq = np.array([1, 3, 4])
pv = np.array([2])

# measurements
se_input = StateEstimationInput()

se_input.p_inj = np.array([ 3.948e+00, -8.000e+00,  4.400e+00, -6.507e-06, -1.407e-05])
se_input.p_inj_idx = np.arange(len(se_input.p_inj))
se_input.p_inj_weight = np.full(len(se_input.p_inj), 0.01)

se_input.q_inj = np.array([ 1.143e+00, -2.800e+00,  2.975e+00,  6.242e-07,  1.957e-06])
se_input.q_inj_idx = np.arange(len(se_input.q_inj))
se_input.q_inj_weight = np.full(len(se_input.q_inj), 0.01)

se_input.vm_m = np.array([0.834, 1.019, 0.974])
se_input.vm_m_idx = pq
se_input.vm_m_weight = np.full(len(se_input.vm_m), 0.01)

# First time will be slow due to compilation
start = time.time()
v_sol, err, converged, results = solve_se_lm(Ybus, Yf, Yt, f, t, se_input, slack, pq, pv)
print("compilation + execution time:", time.time() - start)
bdd_validation(results, m=len(se_input.measurements), n=Ybus.shape[0] + len(pq) + len(pv))

# But then it will be very performant
start = time.time()
v_sol, err, converged, results = solve_se_lm(Ybus, Yf, Yt, f, t, se_input, slack, pq, pv)
print("Execution time:", time.time() - start)

# False data injection
se_input.vm_m[1] -= 0.025
se_input.vm_m[2] += 0.025
v_sol, err, converged, results = solve_se_lm(Ybus, Yf, Yt, f, t, se_input, slack, pq, pv)
print("-------------After False Data Injection-------------")
bdd_validation(results, m=len(se_input.measurements), n=Ybus.shape[0] + len(pq) + len(pv))

Acknowledge

This work was supported by the U.S. Department of Energy (DOE) under award DE-OE0000895 and the Sandia National Laboratories’ directed R&D project #222444.

Owner
Python/JavaScript/Rust
A small scale relica of bank management system using the MySQL queries in the python language.

Bank_Management_system This is a Bank Management System Database Project. Abstract: The main aim of the Bank Management Mini project is to keep record

Arun Singh Babal 1 Jan 27, 2022
Audio-analytics for music-producers! Automate tedious tasks such as musical scale detection, BPM rate classification and audio file conversion.

Click here to be re-directed to the Beat Inspect Streamlit Web-App You are a music producer? Let's get in touch via LinkedIn Fundamental Analytics for

Stefan Rummer 11 Dec 27, 2022
Бэкапалка таблиц mysql 8 через брокер сообщений nats

nats-mysql-tables-backup Бэкап таблиц mysql 8 через брокер сообщений nats (проверено и работает в ubuntu 20.04, при наличии python 3.8) ПРИМЕРЫ: Ниже

Constantine 1 Dec 13, 2021
Домашние задания, выполненные на 3ем семестре РТУ МИРЭА, по дисциплине

ДЗ по курсу "Конфигурационное управление" в РТУ МИРЭА Описание В данном репозитории находятся домашние задания, выполненные на 3ем семестре РТУ МИРЭА,

Semyon Esaev 4 Dec 22, 2022
This repository collects nice scripts ("plugins") for the SimpleBot bot for DeltaChat.

Having fun with DeltaChat This repository collects nice scripts ("plugins") for the SimpleBot bot for DeltaChat. DeltaChat is a nice e-mail based mess

Valentin Brandner 3 Dec 25, 2021
Ant Colony Optimization for Traveling Salesman Problem

tsp-aco Ant Colony Optimization for Traveling Salesman Problem Dependencies Python 3.8 tqdm numpy matplotlib To run the solver run main.py from the p

Baha Eren YALDIZ 4 Feb 03, 2022
CPLib is the abbreviation of Competitive Programming Library.

CPLib CPLib is the abbreviation of Competitive Programming Library. It aims to be a general template and optimization library for competitive programm

12 Oct 16, 2021
Q-Tracker is originally a High School Project created by Admins of Cirus Lab.

Q-Tracker is originally a High School Project created by Admins of Cirus Lab. It's completly coded in python along with mysql.(Tkinter For GUI)

Adithya Krishnan 2 Nov 14, 2022
Open Source Management System for Botanic Garden Collections.

BotGard 3.0 Open Source Management System for Botanic Garden Collections built and maintained by netzkolchose.de in cooperation with the Botanical Gar

netzkolchose.de 1 Dec 15, 2021
A Python wrapper API for operating and working with the Neo4j Graph Data Science (GDS) library

gdsclient NOTE: This is a work in progress and many GDS features are known to be missing or not working properly. This repo hosts the sources for gdsc

Neo4j 100 Dec 20, 2022
使用京东cookie一键生成所有退会链接

JDMemberCloseLinks 本项目旨在使用京东cookie一键生成所有退会链接

hyzaw 68 Jun 10, 2022
This is a fork of the BakeTool with some improvements that I did to have better workflow.

blender-bake-tool This is a fork of the BakeTool with some improvements that I did to have better workflow. 99.99% of work was done by BakeTool team.

Acvarium 3 Oct 04, 2022
Library for managing git hooks

Autohooks Library for managing and writing git hooks in Python. Looking for automatic formatting or linting, e.g., with black and pylint, while creati

Greenbone 165 Dec 16, 2022
synchronize projects via yaml/json manifest. built on libvcs

vcspull - synchronize your repos. built on libvcs Manage your commonly used repos from YAML / JSON manifest(s). Compare to myrepos. Great if you use t

python utilities for version control 200 Dec 20, 2022
General Purpose Python Library by Techman

General Purpose Python Library by Techman

Jack Hubbard 0 Feb 09, 2022
Reproduction repository for the MDX 2021 Hybrid Demucs model

Submission This is the submission for MDX 2021 Track A, for Track B go to the track_b branch. Submission Summary Submission ID: 151378 Submitter: defo

Alexandre Défossez 62 Dec 18, 2022
Predicting Global Crop Yield for World Hunger

Crop Yield And Global Famine - The fifth project I created during my time at General Assembly. I completed this project with three other classmates in the span of three weeks. Most of my work was dir

Adam Muhammad Klesc 2 Jun 19, 2022
Wordless - the #1 app for helping you cheat at Wordle, which is sure to make you popular at parties

Wordless Wordless is the #1 app for helping you cheat at Wordle, which is sure t

James Kirk 7 Feb 04, 2022
A ULauncher/Albert extension that supports currency, units and date time conversion, as well as a calculator that supports complex numbers and functions.

Ulauncher/Albert Calculate Anything Ulauncher/Albert Calculate Anything is an extension for Ulauncher and Albert to calculate things like currency, ti

tchar 67 Jan 01, 2023
Python 3.9.4 Graphics and Compute Shader Framework and Primitives with no external module dependencies

pyshader Python 3.9.4 Graphics and Compute Shader Framework and Primitives with no external module dependencies Fully programmable shader model (even

Alastair Cota 1 Jan 11, 2022