A performant state estimator for power system

Overview

fastSE (power system state estimation)

PyPI pyversions PyPI version fury.io PyPI license

A performant state estimator for power system

sparse matrix + jit + klu + custom improved ordering + python = efficient in computation and development!

Installation

To install, simply run pip install fastSE in your command prompt.

How to use

Here is one simple example. solve_se_lm is a high-level function which computes derivatives, assemble them as sparse matrix and then calculate the estimates using sparse matrix solver. All the low-level functions could also be imported and used individually.

from fastse import solve_se_lm, bdd_validation, StateEstimationInput
from scipy.sparse import csr_matrix
import numpy as np

import time
# A 5 bus example from Prof. Overbye's textbook
# node impedance
Ybus = np.array([[3.729 - 49.720j, 0.000 + 0.000j, 0.000 + 0.000j,
        0.000 + 0.000j, -3.729 + 49.720j],
       [0.000 + 0.000j, 2.678 - 28.459j, 0.000 + 0.000j,
        -0.893 + 9.920j, -1.786 + 19.839j],
       [0.000 + 0.000j, 0.000 + 0.000j, 7.458 - 99.441j,
        -7.458 + 99.441j, 0.000 + 0.000j],
       [0.000 + 0.000j, -0.893 + 9.920j, -7.458 + 99.441j,
        11.922 - 147.959j, -3.571 + 39.679j],
       [-3.729 + 49.720j, -1.786 + 19.839j, 0.000 + 0.000j,
        -3.571 + 39.679j, 9.086 - 108.578j]])
Ybus = csr_matrix(Ybus)

# branch impedance
Yf = np.array([[ 3.729-49.720j,  0.000 +0.000j,  0.000 +0.000j,  0.000 +0.000j,
    -3.729+49.720j],
   [ 0.000 +0.000j, -0.893 +9.920j,  0.000 +0.000j,  0.893 -9.060j,
     0.000 +0.000j],
   [ 0.000 +0.000j, -1.786+19.839j,  0.000 +0.000j,  0.000 +0.000j,
     1.786-19.399j],
   [ 0.000 +0.000j,  0.000 +0.000j,  7.458-99.441j, -7.458+99.441j,
     0.000 +0.000j],
   [ 0.000 +0.000j,  0.000 +0.000j,  0.000 +0.000j, -3.571+39.679j,
     3.571-39.459j]])
Yf = csr_matrix(Yf)

Yt = np.array([[-3.729+49.720j,  0.000 +0.000j,  0.000 +0.000j,  0.000 +0.000j,
     3.729-49.720j],
   [ 0.000 +0.000j,  0.893 -9.060j,  0.000 +0.000j, -0.893 +9.920j,
     0.000 +0.000j],
   [ 0.000 +0.000j,  1.786-19.399j,  0.000 +0.000j,  0.000 +0.000j,
    -1.786+19.839j],
   [ 0.000 +0.000j,  0.000 +0.000j, -7.458+99.441j,  7.458-99.441j,
     0.000 +0.000j],
   [ 0.000 +0.000j,  0.000 +0.000j,  0.000 +0.000j,  3.571-39.459j,
    -3.571+39.679j]])
Yt = csr_matrix(Yt)

# branch from and to bus
f = np.array([0, 3, 4, 2, 4])
t = np.array([4, 1, 1, 3, 3])

# slack, pv and pq buses
slack = np.array([0])  # The slack bus does not have to be the 0-indexed bus
pq = np.array([1, 3, 4])
pv = np.array([2])

# measurements
se_input = StateEstimationInput()

se_input.p_inj = np.array([ 3.948e+00, -8.000e+00,  4.400e+00, -6.507e-06, -1.407e-05])
se_input.p_inj_idx = np.arange(len(se_input.p_inj))
se_input.p_inj_weight = np.full(len(se_input.p_inj), 0.01)

se_input.q_inj = np.array([ 1.143e+00, -2.800e+00,  2.975e+00,  6.242e-07,  1.957e-06])
se_input.q_inj_idx = np.arange(len(se_input.q_inj))
se_input.q_inj_weight = np.full(len(se_input.q_inj), 0.01)

se_input.vm_m = np.array([0.834, 1.019, 0.974])
se_input.vm_m_idx = pq
se_input.vm_m_weight = np.full(len(se_input.vm_m), 0.01)

# First time will be slow due to compilation
start = time.time()
v_sol, err, converged, results = solve_se_lm(Ybus, Yf, Yt, f, t, se_input, slack, pq, pv)
print("compilation + execution time:", time.time() - start)
bdd_validation(results, m=len(se_input.measurements), n=Ybus.shape[0] + len(pq) + len(pv))

# But then it will be very performant
start = time.time()
v_sol, err, converged, results = solve_se_lm(Ybus, Yf, Yt, f, t, se_input, slack, pq, pv)
print("Execution time:", time.time() - start)

# False data injection
se_input.vm_m[1] -= 0.025
se_input.vm_m[2] += 0.025
v_sol, err, converged, results = solve_se_lm(Ybus, Yf, Yt, f, t, se_input, slack, pq, pv)
print("-------------After False Data Injection-------------")
bdd_validation(results, m=len(se_input.measurements), n=Ybus.shape[0] + len(pq) + len(pv))

Acknowledge

This work was supported by the U.S. Department of Energy (DOE) under award DE-OE0000895 and the Sandia National Laboratories’ directed R&D project #222444.

Owner
Python/JavaScript/Rust
A cheat sheet for streamlit

Streamlit Cheat Sheet App to summarise streamlit docs v1.0.0 There is also an accompanying png and pdf version https://github.com/daniellewisDL/stream

Daniel Lewis 221 Jan 04, 2023
A companion web application to connect stash to deovr

stash-vr-companion This is a companion web application to connect stash to deovr. Stash is a self hosted web application to manage your porn collectio

19 Sep 29, 2022
Tindicators is a Python library to calculate the values of various technical indicators

Tindicators is a Python library to calculate the values of various technical indicators

omar 3 Mar 03, 2022
SpaCy3Urdu: run command to setup assets(dataset from UD)

Project setup run command to setup assets(dataset from UD) spacy project assets It uses project.yml file and download the data from UD GitHub reposito

Muhammad Irfan 1 Dec 14, 2021
Use Fofa、shodan、zoomeye、360quake to collect information(e.g:domain,IP,CMS,OS)同时调用Fofa、shodan、zoomeye、360quake四个网络空间测绘API完成红队信息收集

Cyberspace Map API English/中文 Development fofaAPI Completed zoomeyeAPI shodanAPI regular 360 quakeAPI Completed Difficulty APIs uses different inputs

Xc1Ym 61 Oct 08, 2022
MODeflattener deobfuscates control flow flattened functions obfuscated by OLLVM using Miasm.

MODeflattener deobfuscates control flow flattened functions obfuscated by OLLVM using Miasm.

Suraj Malhotra 138 Jan 07, 2023
Explore related sequences in the OEIS

OEIS explorer This is a tool for exploring two different kinds of relationships between sequences in the OEIS: mentions (links) of other sequences on

Alex Hall 6 Mar 15, 2022
Run-Your-Own Firefox Sync Server

Run-Your-Own Firefox Sync Server This is an all-in-one package for running a self-hosted Firefox Sync server. It bundles the "tokenserver" project for

Mozilla Services 1.7k Dec 30, 2022
Python: Wrangled and unpivoted gaming datasets. Tableau: created dashboards - Market Beacon and Player’s Shopping Guide.

Created two information products for GameStop. Using Python, wrangled and unpivoted datasets, and created Tableau dashboards.

Zinaida Dvoskina 2 Jan 29, 2022
Library to generate random strings from regular expressions.

Xeger Library to generate random strings from regular expressions. To install, type: pip install xeger To use, type: from xeger import Xeger

Colm O'Connor 101 Nov 15, 2022
Step by step development of a vending coffee machine project, including tkinter, sqlite3, simulation, etc.

Step by step development of a vending coffee machine project, including tkinter, sqlite3, simulation, etc.

Nikolaos Avouris 2 Dec 05, 2021
Get you an ultimate lexer generator using Fable; port OCaml sedlex to FSharp, Python and more!

NOTE: currently we support interpreted mode and Python source code generation. It's EASY to compile compiled_unit into source code for C#, F# and othe

Taine Zhao 15 Aug 06, 2022
Socorro is the Mozilla crash ingestion pipeline. It accepts and processes Breakpad-style crash reports. It provides analysis tools.

Socorro Socorro is a Mozilla-centric ingestion pipeline and analysis tools for crash reports using the Breakpad libraries. Support This is a Mozilla-s

Mozilla Services 552 Dec 19, 2022
Just messing around with AI for fun coding 😂

Python-AI Projects 🤖 World Clock ⏰ ⚙︎ Steps to run world-clock.py file Download and open the file in your Python IDE. Run the file a type the name of

Danish Saleem 0 Feb 10, 2022
A tool for checking if the external data used in Flatpak manifests is still up to date

Flatpak External Data Checker This is a tool for checking for outdated or broken links of external data in Flatpak manifests. Motivation Flatpak apps

Flathub 76 Dec 24, 2022
Official repository for the BPF Performance Tools book

BPF Performance Tools This is the official repository of BPF (eBPF) tools from the book BPF Performance Tools: Linux and Application Observability. Th

Brendan Gregg 1.2k Dec 28, 2022
Anonymous Dark Web Tool

Anonymous Dark Web Tool v1.0 Features Anonymous Mode Darkweb Search Engines Check Onion Url/s Scanning Host/IP Keep eyes on v2.0 soon. Requirement Deb

Mounib Kamhaz 11 Apr 10, 2022
IDA Pro plugin that shows the comments in a database

ShowComments A Simple IDA Pro plugin that shows the comments in a database Installation Copy the file showcomments.py to the plugins folder under IDA

Fernando Mercês 32 Dec 10, 2022
Application launcher and environment management

Application launcher and environment management for 21st century games and digital post-production, built with bleeding-rez and Qt.py News Date Releas

10 Nov 03, 2022
Incident Response Process and Playbooks | Goal: Playbooks to be Mapped to MITRE Attack Techniques

PURPOSE OF PROJECT That this project will be created by the SOC/Incident Response Community Develop a Catalog of Incident Response Playbook for every

Austin Songer 987 Jan 02, 2023