Learning Features with Parameter-Free Layers (ICLR 2022)

Related tags

Deep LearningPfLayer
Overview

Learning Features with Parameter-Free Layers (ICLR 2022)

Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper

NAVER AI Lab, NAVER CLOVA

Updates

  • 02.11.2022 Code has been uploaded
  • 02.06.2022 Initial update

Abstract

Trainable layers such as convolutional building blocks are the standard network design choices by learning parameters to capture the global context through successive spatial operations. When designing an efficient network, trainable layers such as the depthwise convolution is the source of efficiency in the number of parameters and FLOPs, but there was little improvement to the model speed in practice. This paper argues that simple built-in parameter-free operations can be a favorable alternative to the efficient trainable layers replacing spatial operations in a network architecture. We aim to break the stereotype of organizing the spatial operations of building blocks into trainable layers. Extensive experimental analyses based on layer-level studies with fully-trained models and neural architecture searches are provided to investigate whether parameter-free operations such as the max-pool are functional. The studies eventually give us a simple yet effective idea for redesigning network architectures, where the parameter-free operations are heavily used as the main building block without sacrificing the model accuracy as much. Experimental results on the ImageNet dataset demonstrate that the network architectures with parameter-free operations could enjoy the advantages of further efficiency in terms of model speed, the number of the parameters, and FLOPs.

Some Analyses in The Paper

1. Depthwise convolution is replaceble with a parameter-free operation:

2. Parameter-free operations are frequently searched in normal building blocks by NAS:

3. R50-hybrid (with the eff-bottlenecks) yields a localizable features (see the Grad-CAM visualizations):

Our Proposed Models

1. Schematic illustration of our models

  • Here, we provide example models where the parameter-free operations (i.e., eff-layer) are mainly used;

  • Parameter-free operations such as the max-pool2d and avg-pool2d can replace the spatial operations (conv and SA).

2. Brief model descriptions

resnet_pf.py: resnet50_max(), resnet50_hybrid(): R50-max, R50-hybrid - model with the efficient bottlenecks

vit_pf.py: vit_s_max() - ViT with the efficient transformers

pit_pf.py: pit_s_max() - PiT with the efficient transformers

Usage

Requirements

pytorch >= 1.6.0
torchvision >= 0.7.0
timm >= 0.3.4
apex == 0.1.0

Pretrained models

Network Img size Params. (M) FLOPs (G) GPU (ms) Top-1 (%) Top-5 (%)
R50 224x224 25.6 4.1 8.7 76.2 93.8
R50-max 224x224 14.2 2.2 6.8 74.3 92.0
R50-hybrid 224x224 17.3 2.6 7.3 77.1 93.1
Network Img size Throughputs Vanilla +CutMix +DeiT
R50 224x224 962 / 112 76.2 77.6 78.8
ViT-S-max 224x224 763 / 96 74.2 77.3 79.8
PiT-S-max 224x224 1000 / 92 75.7 78.1 80.1

Model load & evaluation

Example code of loading resnet50_hybrid without timm:

import torch
from resnet_pf import resnet50_hybrid

model = resnet50_hybrid() 
model.load_state_dict(torch.load('./weight/checkpoint.pth'))
print(model(torch.randn(1, 3, 224, 224)))

Example code of loading pit_s_max with timm:

import torch
import timm
import pit_pf
   
model = timm.create_model('pit_s_max', pretrained=False)
model.load_state_dict(torch.load('./weight/checkpoint.pth'))
print(model(torch.randn(1, 3, 224, 224)))

Directly run each model can verify a single iteration of forward and backward of the mode.

Training

Our ResNet-based models can be trained with any PyTorch training codes; we recommend timm. We provide a sample script for training R50_hybrid with the standard 90-epochs training setup:

  python3 -m torch.distributed.launch --nproc_per_node=4 train.py ./ImageNet_dataset/ --model resnet50_hybrid --opt sgd --amp \
  --lr 0.2 --weight-decay 1e-4 --batch-size 256 --sched step --epochs 90 --decay-epochs 30 --warmup-epochs 3 --smoothing 0\

Vision transformers (ViT and PiT) models are also able to be trained with timm, but we recommend the code DeiT to train with. We provide a sample training script with the default training setup in the package:

  python3 -m torch.distributed.launch --nproc_per_node=4 --use_env main.py --model vit_s_max --batch-size 256 --data-path ./ImageNet_dataset/

License

Copyright 2022-present NAVER Corp.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

How to cite

@inproceedings{han2022learning,
    title={Learning Features with Parameter-Free Layers},
    author={Dongyoon Han and YoungJoon Yoo and Beomyoung Kim and Byeongho Heo},
    year={2022},
    journal={International Conference on Learning Representations (ICLR)},
}
Owner
NAVER AI
Official account of NAVER AI, Korea No.1 Industrial AI Research Group
NAVER AI
Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

FlyingRoastDuck 59 Oct 31, 2022
img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation Figure 1: We estimate the 6DoF rigid transformation of a 3D face (rendered in si

Vítor Albiero 519 Dec 29, 2022
Over9000 optimizer

Optimizers and tests Every result is avg of 20 runs. Dataset LR Schedule Imagenette size 128, 5 epoch Imagewoof size 128, 5 epoch Adam - baseline OneC

Mikhail Grankin 405 Nov 27, 2022
SpecAugmentPyTorch - A Pytorch (support batch and channel) implementation of GoogleBrain's SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition

SpecAugment An implementation of SpecAugment for Pytorch How to use Install pytorch, version=1.9.0 (new feature (torch.Tensor.take_along_dim) is used

IMLHF 3 Oct 11, 2022
UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation

UNION Automatic Evaluation Metric described in the paper UNION: An UNreferenced MetrIc for Evaluating Open-eNded Story Generation (EMNLP 2020). Please

50 Dec 30, 2022
Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training".

Mixup-Data-Dependency Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training". Running Alternating Line Exp

Muthu Chidambaram 0 Nov 11, 2021
EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness

EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness Improving GAN Equilibrium by Raising Spatial Awareness Jianyuan Wang, Ceyuan Yang, Ying

GenForce: May Generative Force Be with You 149 Dec 19, 2022
Realtime Face Anti Spoofing with Face Detector based on Deep Learning using Tensorflow/Keras and OpenCV

Realtime Face Anti-Spoofing Detection 🤖 Realtime Face Anti Spoofing Detection with Face Detector to detect real and fake faces Please star this repo

Prem Kumar 86 Aug 03, 2022
Multi-label classification of retinal disorders

Multi-label classification of retinal disorders This is a deep learning course project. The goal is to develop a solution, using computer vision techn

Sundeep Bhimireddy 1 Jan 29, 2022
Freecodecamp Scientific Computing with Python Certification; Solution for Challenge 2: Time Calculator

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Hellen Namulinda 0 Feb 26, 2022
A modular, research-friendly framework for high-performance and inference of sequence models at many scales

T5X T5X is a modular, composable, research-friendly framework for high-performance, configurable, self-service training, evaluation, and inference of

Google Research 1.1k Jan 08, 2023
Cognate Detection Repository

Cognate Detection Repository Details This repository contains the data for two publications: Challenge Dataset of Cognates and False Friend Pairs from

Diptesh Kanojia 1 Apr 26, 2022
Unofficial pytorch implementation for Self-critical Sequence Training for Image Captioning. and others.

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 906 Jan 03, 2023
[ICCV 2021] Released code for Causal Attention for Unbiased Visual Recognition

CaaM This repo contains the codes of training our CaaM on NICO/ImageNet9 dataset. Due to my recent limited bandwidth, this codebase is still messy, wh

Wang Tan 66 Dec 31, 2022
A project which aims to protect your privacy using inexpensive hardware and easily modifiable software

Protecting your privacy using an ESP32, an IR sensor and a python script This project, which I personally call the "never-gonna-catch-me-in-the-act-ev

8 Oct 10, 2022
A template repository for submitting a job to the Slurm Cluster installed at the DISI - University of Bologna

Cluster di HPC con GPU per esperimenti di calcolo (draft version 1.0) Per poter utilizzare il cluster il primo passo è abilitare l'account istituziona

20 Dec 16, 2022
Code from PropMix, accepted at BMVC'21

PropMix: Hard Sample Filtering and Proportional MixUp for Learning with Noisy Labels This repository is the official implementation of Hard Sample Fil

6 Dec 21, 2022
Algorithmic Trading using RNN

Deep-Trading This an implementation adapted from Rachnog Neural networks for algorithmic trading. Part One — Simple time series forecasting and this c

Hazem Nomer 29 Sep 04, 2022
[ACMMM 2021 Oral] Enhanced Invertible Encoding for Learned Image Compression

InvCompress Official Pytorch Implementation for "Enhanced Invertible Encoding for Learned Image Compression", ACMMM 2021 (Oral) Figure: Our framework

96 Nov 30, 2022
Tensorflow2.0 🍎🍊 is delicious, just eat it! 😋😋

How to eat TensorFlow2 in 30 days ? 🔥 🔥 Click here for Chinese Version(中文版) 《10天吃掉那只pyspark》 🚀 github项目地址: https://github.com/lyhue1991/eat_pyspark

lyhue1991 9.7k Jan 01, 2023