Bootstrapped Representation Learning on Graphs

Related tags

Deep Learningbgrl
Overview

Bootstrapped Representation Learning on Graphs

Overview of BGRL

This is the PyTorch implementation of BGRL Bootstrapped Representation Learning on Graphs

The main scripts are train_transductive.py and train_ppi.py used for training on the transductive task datasets and the PPI dataset respectively.

For linear evaluation, using the checkpoints we provide

Setup

To set up a Python virtual environment with the required dependencies, run:

python3 -m venv bgrl_env
source bgrl_env/bin/activate
pip install --upgrade pip

Follow instructions to install PyTorch 1.9.1 and PyG:

pip install torch==1.9.1+cu111 -f https://download.pytorch.org/whl/torch_stable.html
pip install torch-scatter torch-sparse torch-cluster torch-spline-conv torch-geometric -f https://data.pyg.org/whl/torch-1.9.0+cu111.html
pip install absl-py==0.12.0 tensorboard==2.6.0 ogb

The code uses PyG (PyTorch Geometric). All datasets are available through this package.

Experiments on transductive tasks

Train model from scratch

To run BGRL on a dataset from the transductive setting, use train_transductive.py and one of the configuration files that can be found in config/.

For example, to train on the Coauthor-CS dataset, use the following command:

python3 train_transductive.py --flagfile=config/coauthor-cs.cfg

Flags can be overwritten:

python3 train_transductive.py --flagfile=config/coauthor-cs.cfg\
                              --logdir=./runs/coauthor-cs-256\
                              --predictor_hidden_size=256

Evaluation is performed periodically during training. We fit a logistic regression model on top of the representation to assess its performance throughout training. Evaluation is triggered every eval_epochsand will not back-propagate any gradient to the encoder.

Test accuracies under linear evaluation are reported on TensorBoard. To start the tensorboard server run the following command:

tensorboard --logdir=./runs

Perform linear evaluation using the provided model weights

The configuration files we provide allow to reproduce the results in the paper, summarized in the table below. We also provide weights of the BGRL-trained encoders for each dataset.

WikiCS Amazon Computers Amazon Photos CoauthorCS CoauthorPhy
BGRL 79.98 ± 0.10
(weights)
90.34 ± 0.19
(weights)
93.17 ± 0.30
(weights)
93.31 ± 0.13
(weights)
95.73 ± 0.05
(weights)

To run linear evaluation, using the provided weights, run the following command for any of the datasets:

python3 linear_eval_transductive.py --flagfile=config-eval/coauthor-cs.cfg

Note that the dataset is split randomly between train/val/test, so the reported accuracy might be slightly different with each run. In our reported table, we average across multiple splits, as well as multiple randomly initialized network weights.

Experiments on inductive task with multiple graphs

To train on the PPI dataset, use train_ppi.py:

python3 train_ppi.py --flagfile=config/ppi.cfg

The evaluation for PPI is different due to the size of the dataset, we evaluate by training a linear layer on top of the representations via gradient descent for 100 steps.

The configuration files for the different architectures can be found in config/. We provide weights of the BGRL-trained encoder as well.

PPI
BGRL 69.41 ± 0.15 (weights)

To run linear evaluation, using the provided weights, run the following command:

python3 linear_eval_ppi.py --flagfile=config-eval/ppi.cfg

Note that our reported score is based on an average over multiple runs.

Citation

If you find the code useful for your research, please consider citing our work:

@misc{thakoor2021bootstrapped,
     title={Large-Scale Representation Learning on Graphs via Bootstrapping}, 
     author={Shantanu Thakoor and Corentin Tallec and Mohammad Gheshlaghi Azar and Mehdi Azabou and Eva L. Dyer and Rémi Munos and Petar Veličković and Michal Valko},
     year={2021},
     eprint={2102.06514},
     archivePrefix={arXiv},
     primaryClass={cs.LG}}
Owner
NerDS Lab :: Neural Data Science Lab
machine learning and neuroscience
NerDS Lab :: Neural Data Science Lab
Official implementation for (Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching, AAAI-2021)

Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching Official pytorch implementation of "Show, Attend and Distill: Kn

Clova AI Research 80 Dec 16, 2022
Official Repository for the ICCV 2021 paper "PixelSynth: Generating a 3D-Consistent Experience from a Single Image"

PixelSynth: Generating a 3D-Consistent Experience from a Single Image (ICCV 2021) Chris Rockwell, David F. Fouhey, and Justin Johnson [Project Website

Chris Rockwell 95 Nov 22, 2022
Code release for The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification (TIP 2020)

The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification Code release for The Devil is in the Channels: Mutual-Channel

PRIS-CV: Computer Vision Group 230 Dec 31, 2022
Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775

CIPS -- Official Pytorch Implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis Requirements pip install -r requi

Multimodal Lab @ Samsung AI Center Moscow 201 Dec 21, 2022
XtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale

XtremeDistilTransformers for Distilling Massive Multilingual Neural Networks ACL 2020 Microsoft Research [Paper] [Video] Releasing [XtremeDistilTransf

Microsoft 125 Jan 04, 2023
Code for NeurIPS 2021 paper: Invariant Causal Imitation Learning for Generalizable Policies

Invariant Causal Imitation Learning for Generalizable Policies Ioana Bica, Daniel Jarrett, Mihaela van der Schaar Neural Information Processing System

Ioana Bica 17 Dec 01, 2022
A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking.

BeatNet A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking. This repository

Mojtaba Heydari 157 Dec 27, 2022
tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Open Neural Network Exchange 1.8k Jan 08, 2023
Supporting code for the paper "Dangers of Bayesian Model Averaging under Covariate Shift"

Dangers of Bayesian Model Averaging under Covariate Shift This repository contains the code to reproduce the experiments in the paper Dangers of Bayes

Pavel Izmailov 25 Sep 21, 2022
Simple image captioning model - CLIP prefix captioning.

Simple image captioning model - CLIP prefix captioning.

688 Jan 04, 2023
Pytorch implementation of NEGEV method. Paper: "Negative Evidence Matters in Interpretable Histology Image Classification".

Pytorch 1.10.0 code for: Negative Evidence Matters in Interpretable Histology Image Classification (https://arxiv. org/abs/xxxx.xxxxx) Citation: @arti

Soufiane Belharbi 4 Dec 01, 2022
Contrastive Learning of Structured World Models

Contrastive Learning of Structured World Models This repository contains the official PyTorch implementation of: Contrastive Learning of Structured Wo

Thomas Kipf 371 Jan 06, 2023
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

RAVE: Realtime Audio Variational autoEncoder Official implementation of RAVE: A variational autoencoder for fast and high-quality neural audio synthes

ACIDS 587 Jan 01, 2023
A minimal TPU compatible Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

NeRF Minimal Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Result of Tiny-NeRF RGB Depth

Soumik Rakshit 11 Jul 24, 2022
这是一个facenet-pytorch的库,可以用于训练自己的人脸识别模型。

Facenet:人脸识别模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 预测步骤 How2predict 训练步骤 How2train 参考资料 Reference 性能情况 训练数据

Bubbliiiing 210 Jan 06, 2023
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

rydercalmdown 24 Dec 09, 2022
Supporting code for the Neograd algorithm

Neograd This repo supports the paper Neograd: Gradient Descent with a Near-Ideal Learning Rate, which introduces the algorithm "Neograd". The paper an

Michael Zimmer 12 May 01, 2022
PyTorch Implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedding (ORAL, MICCAIW 2021)

Small Lesion Segmentation in Brain MRIs with Subpixel Embedding PyTorch implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedd

22 Oct 21, 2022
CT Based COVID 19 Diagnose by Image Processing and Deep Learning

This project proposed the deep learning and image processing method to undertake the diagnosis on 2D CT image and 3D CT volume.

1 Feb 08, 2022