Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

Overview

counterfactual-tpp

This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes.

Pre-requisites

This code depends on the following packages:

  1. networkx
  2. numpy
  3. pandas
  4. matplotlib

to generate map plots:

  1. GeoPandas
  2. geoplot

Code structure

  • src/counterfactual_tpp.py: Contains the code to sample rejected events using the superposition property and the algorithm to calculate the counterfactuals.
  • src/gumbel.py: Contains the utility functions for the Gumbel-Max SCM.
  • src/sampling_utils.py: Contains the code for the Lewis' thinning algorithm (thinning_T function) and some other sampling utilities.
  • src/hawkes/hawkes.py: Contains the code for sampling from the hawkes process using the superposition property of tpps. It also includes the algorithm for sampling a counterfactual sequence of events given a sequence of observed events for a Hawkes process.
  • src/hawkes/hawkes_example.ipynb: Contains an example of running algorithm 3 (in the paper) for both cases where we have (1) both observed and un-observed events, and (2) the case that we have only the observed events.
  • ebola/graph_generation.py: Contains code to build the Ebola network based on the network of connected districts. This code is adopted from the disease-control project.
  • ebola/dynamics.py: Contains code for sampling counterfactual sequence of infections given a sequence of observed infections from the SIR porcess (the calculate_counterfactual function). The rest of the code is adopted from the disease-control project, which simulates continuous-time SIR epidemics with exponentially distributed inter-event times.

The directory ebola/data/ebola contains the information about the Ebola network adjanceny matrix and the cleaned ebola outbreak data adopted from the disease-control project.

The directory ebola/map/geojson contains the geographical information of the districts studied in the Ebola outbreak dataset. The geojson files are obtained from Nominatim.

The directory ebola/map/overall_data contains data for generating the geographical maps in the paper, and includs the overall number of infection under applying different interventions.

The directories src/data_hawkes and src/data_inhomogeneous contain observational data used to generate Synthetic plots in the paper. You can use this data to re-generate paper's plots. Otherwise, you can simply generate new random samples by the code.

Experiments

Synthetic

Epidemiological

Citation

If you use parts of the code in this repository for your own research, please consider citing:

@article{noorbakhsh2021counterfactual,
        title={Counterfactual Temporal Point Processes},
        author={Noorbakhsh, Kimia and Gomez-Rodriguez, Manuel},
        journal={arXiv preprint arXiv:2111.07603},
        year={2021}
}
Owner
Networks Learning
Networks Learning group at MPI-SWS
Networks Learning
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

scikit-learn 52.5k Jan 08, 2023
PyTorch implementation of DeepLab v2 on COCO-Stuff / PASCAL VOC

DeepLab with PyTorch This is an unofficial PyTorch implementation of DeepLab v2 [1] with a ResNet-101 backbone. COCO-Stuff dataset [2] and PASCAL VOC

Kazuto Nakashima 995 Jan 08, 2023
This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

Udbhav Bamba 41 Dec 14, 2022
PyTorch implementation for OCT-GAN Neural ODE-based Conditional Tabular GANs (WWW 2021)

OCT-GAN: Neural ODE-based Conditional Tabular GANs (OCT-GAN) Code for reproducing the experiments in the paper: Jayoung Kim*, Jinsung Jeon*, Jaehoon L

BigDyL 7 Dec 27, 2022
Code release for Convolutional Two-Stream Network Fusion for Video Action Recognition

Convolutional Two-Stream Network Fusion for Video Action Recognition

Christoph Feichtenhofer 676 Dec 31, 2022
K-Nearest Neighbor in Pytorch

Pytorch KNN CUDA 2019/11/02 This repository will no longer be maintained as pytorch supports sort() and kthvalue on tensors. git clone https://github.

Chris Choy 65 Dec 01, 2022
(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

xxxnell 656 Dec 30, 2022
A Comprehensive Study on Learning-Based PE Malware Family Classification Methods

A Comprehensive Study on Learning-Based PE Malware Family Classification Methods Datasets Because of copyright issues, both the MalwareBazaar dataset

8 Oct 21, 2022
🔥3D-RecGAN in Tensorflow (ICCV Workshops 2017)

3D Object Reconstruction from a Single Depth View with Adversarial Learning Bo Yang, Hongkai Wen, Sen Wang, Ronald Clark, Andrew Markham, Niki Trigoni

Bo Yang 125 Nov 26, 2022
DeepHyper: Scalable Asynchronous Neural Architecture and Hyperparameter Search for Deep Neural Networks

What is DeepHyper? DeepHyper is a software package that uses learning, optimization, and parallel computing to automate the design and development of

DeepHyper Team 214 Jan 08, 2023
Performant, differentiable reinforcement learning

deluca Performant, differentiable reinforcement learning Notes This is pre-alpha software and is undergoing a number of core changes. Updates to follo

Google 114 Dec 27, 2022
Revisiting Video Saliency: A Large-scale Benchmark and a New Model (CVPR18, PAMI19)

DHF1K =========================================================================== Wenguan Wang, J. Shen, M.-M Cheng and A. Borji, Revisiting Video Sal

Wenguan Wang 126 Dec 03, 2022
Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt. This is done by

Mehdi Cherti 135 Dec 30, 2022
Implement object segmentation on images using HOG algorithm proposed in CVPR 2005

HOG Algorithm Implementation Description HOG (Histograms of Oriented Gradients) Algorithm is an algorithm aiming to realize object segmentation (edge

Leo Hsieh 2 Mar 12, 2022
Suite of 500 procedurally-generated NLP tasks to study language model adaptability

TaskBench500 The TaskBench500 dataset and code for generating tasks. Data The TaskBench dataset is available under wget http://web.mit.edu/bzl/www/Tas

Belinda Li 20 May 17, 2022
Deeper insights into graph convolutional networks for semi-supervised learning

deeper_insights_into_GCNs Deeper insights into graph convolutional networks for semi-supervised learning References data and utils.py come from Implem

Davidham3 17 Dec 16, 2022
GazeScroller - Using Facial Movements to perform Hands-free Gesture on the system

GazeScroller Using Facial Movements to perform Hands-free Gesture on the system

2 Jan 05, 2022
SE3 Pose Interp - Interpolate camera pose or trajectory in SE3, pose interpolation, trajectory interpolation

SE3 Pose Interpolation Pose estimated from SLAM system are always discrete, and

Ran Cheng 4 Dec 15, 2022
Tensorflow 2.x implementation of Panoramic BlitzNet for object detection and semantic segmentation on indoor panoramic images.

Deep neural network for object detection and semantic segmentation on indoor panoramic images. The implementation is based on the papers:

Alejandro de Nova Guerrero 9 Nov 24, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Libo Qin 25 Sep 06, 2022