BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation

Overview

key_visual

BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation

This is a demo implementation of BYOL for Audio (BYOL-A), a self-supervised learning method for general-purpose audio representation, includes:

  • Training code that can train models with arbitrary audio files.
  • Evaluation code that can evaluate trained models with downstream tasks.
  • Pretrained weights.

If you find BYOL-A useful in your research, please use the following BibTeX entry for citation.

@misc{niizumi2021byol-a,
      title={BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation}, 
      author={Daisuke Niizumi and Daiki Takeuchi and Yasunori Ohishi and Noboru Harada and Kunio Kashino},
      booktitle = {2021 International Joint Conference on Neural Networks, {IJCNN} 2021},
      year={2021},
      eprint={2103.06695},
      archivePrefix={arXiv},
      primaryClass={eess.AS}
}

Getting Started

  1. Download external source files, and apply a patch. Our implementation uses the following.

    curl -O https://raw.githubusercontent.com/lucidrains/byol-pytorch/2aa84ee18fafecaf35637da4657f92619e83876d/byol_pytorch/byol_pytorch.py
    patch < byol_a/byol_pytorch.diff
    mv byol_pytorch.py byol_a
    curl -O https://raw.githubusercontent.com/daisukelab/general-learning/7b31d31637d73e1a74aec3930793bd5175b64126/MLP/torch_mlp_clf.py
    mv torch_mlp_clf.py utils
  2. Install PyTorch 1.7.1, torchaudio, and other dependencies listed on requirements.txt.

Evaluating BYOL-A Representations

Downstream Task Evaluation

The following steps will perform a downstream task evaluation by linear-probe fashion. This is an example with SPCV2; Speech commands dataset v2.

  1. Preprocess metadata (.csv file) and audio files, processed files will be stored under a folder work.

    # usage: python -m utils.preprocess_ds <downstream task> <path to its dataset>
    python -m utils.preprocess_ds spcv2 /path/to/speech_commands_v0.02
  2. Run evaluation. This will convert all .wav audio to representation embeddings first, train a lineaer layer network, then calculate accuracy as a result.

    python evaluate.py pretrained_weights/AudioNTT2020-BYOLA-64x96d2048.pth spcv2

You can also run an evaluation multiple times and take an average result. Following will evaluate on UrbanSound8K with a unit audio duration of 4.0 seconds, for 10 times.

# usage: python evaluate.py <your weight> <downstream task> <unit duration sec.> <# of iteration>
python evaluate.py pretrained_weights/AudioNTT2020-BYOLA-64x96d2048.pth us8k 4.0 10

Evaluating Representations In Your Tasks

This is an example to calculate a feature vector for an audio sample.

from byol_a.common import *
from byol_a.augmentations import PrecomputedNorm
from byol_a.models import AudioNTT2020


device = torch.device('cuda')
cfg = load_yaml_config('config.yaml')
print(cfg)

# Mean and standard deviation of the log-mel spectrogram of input audio samples, pre-computed.
# See calc_norm_stats in evaluate.py for your reference.
stats = [-5.4919195,  5.0389895]

# Preprocessor and normalizer.
to_melspec = torchaudio.transforms.MelSpectrogram(
    sample_rate=cfg.sample_rate,
    n_fft=cfg.n_fft,
    win_length=cfg.win_length,
    hop_length=cfg.hop_length,
    n_mels=cfg.n_mels,
    f_min=cfg.f_min,
    f_max=cfg.f_max,
)
normalizer = PrecomputedNorm(stats)

# Load pretrained weights.
model = AudioNTT2020(d=cfg.feature_d)
model.load_weight('pretrained_weights/AudioNTT2020-BYOLA-64x96d2048.pth', device)

# Load your audio file.
wav, sr = torchaudio.load('work/16k/spcv2/one/00176480_nohash_0.wav') # a sample from SPCV2 for now
assert sr == cfg.sample_rate, "Let's convert the audio sampling rate in advance, or do it here online."

# Convert to a log-mel spectrogram, then normalize.
lms = normalizer((to_melspec(wav) + torch.finfo(torch.float).eps).log())

# Now, convert the audio to the representation.
features = model(lms.unsqueeze(0))

Training From Scratch

You can also train models. Followings are an example of training on FSD50K.

  1. Convert all samples to 16kHz. This will convert all FSD50K files to a folder work/16k/fsd50k while preserving folder structure.

    python -m utils.convert_wav /path/to/fsd50k work/16k/fsd50k
  2. Start training, this example trains with all development set audio samples from FSD50K.

    python train.py work/16k/fsd50k/FSD50K.dev_audio

Refer to Table VI on our paper for the performance of a model trained on FSD50K.

Pretrained Weights

We include 3 pretrained weights of our encoder network.

Method Dim. Filename NSynth US8K VoxCeleb1 VoxForge SPCV2/12 SPCV2 Average
BYOL-A 512-d AudioNTT2020-BYOLA-64x96d512.pth 69.1% 78.2% 33.4% 83.5% 86.5% 88.9% 73.3%
BYOL-A 1024-d AudioNTT2020-BYOLA-64x96d1024.pth 72.7% 78.2% 38.0% 88.5% 90.1% 91.4% 76.5%
BYOL-A 2048-d AudioNTT2020-BYOLA-64x96d2048.pth 74.1% 79.1% 40.1% 90.2% 91.0% 92.2% 77.8%

License

This implementation is for your evaluation of BYOL-A paper, see LICENSE for the detail.

Acknowledgements

BYOL-A is built on top of byol-pytorch, a BYOL implementation by Phil Wang (@lucidrains). We thank Phil for open-source sophisticated code.

@misc{wang2020byol-pytorch,
  author =       {Phil Wang},
  title =        {Bootstrap Your Own Latent (BYOL), in Pytorch},
  howpublished = {\url{https://github.com/lucidrains/byol-pytorch}},
  year =         {2020}
}

References

Comments
  • Question for reproducing results

    Question for reproducing results

    Hi,

    Thanks for sharing this great work! I tried to reproduce the results using the official guidance but I failed.

    After processing the data, I run the following commands:

    CUDA_VISIBLE_DEVICES=0 python -W ignore train.py work/16k/fsd50k/FSD50K.dev_audio
    cp lightning_logs/version_4/checkpoints/epoch\=99-step\=16099.ckpt AudioNTT2020-BYOLA-64x96d2048.pth
    CUDA_VISIBLE_DEVICES=4 python evaluate.py AudioNTT2020-BYOLA-64x96d2048.pth spcv2
    

    However, the results are far from the reported results

    image

    Did I miss something important? Thank you very much.

    question 
    opened by ChenyangLEI 15
  • Evaluation on voxforge

    Evaluation on voxforge

    Hi,

    Thank you so much for your contribution. This works is very interesting and your code is easy for me to follow. But one of the downstream dataset, voxforge is missing from the preprocess_ds.py. Could you please release the code for that dataset, too?

    Thank you again for your time.

    Best regards

    opened by Huiimin5 9
  • A mistake in RunningMean

    A mistake in RunningMean

    Thank you for the fascinating paper and the code to reproduce it!

    I think there might be a problem in RunningMean. The current formula (the same in v1 and v2) looks like this:

    $$ m_n = m_{n - 1} + \frac{a_n - m_{n - 1}}{n - 1}, $$

    which is inconsistent with the correct formula listed on StackOverflow:

    $$ m_n = m_{n - 1} + \frac{a_n - m_{n - 1}}{n}. $$

    The problem is that self.n is incremented after the new mean is computed. Could you please either correct me if I am wrong or correct the code?

    opened by WhiteTeaDragon 4
  • a basic question:torch.randn(): argument 'size' must be tuple of ints, but found element of type list at pos 3`

    a basic question:torch.randn(): argument 'size' must be tuple of ints, but found element of type list at pos 3`

    Traceback (most recent call last):
      File "F:\IntellIDEA\PyCharm 2019.2.2\helpers\pydev\pydevd.py", line 2066, in <module>
        main()
      File "F:\IntellIDEA\PyCharm 2019.2.2\helpers\pydev\pydevd.py", line 2060, in main
        globals = debugger.run(setup['file'], None, None, is_module)
      File "F:\IntellIDEA\PyCharm 2019.2.2\helpers\pydev\pydevd.py", line 1411, in run
        return self._exec(is_module, entry_point_fn, module_name, file, globals, locals)
      File "F:\IntellIDEA\PyCharm 2019.2.2\helpers\pydev\pydevd.py", line 1418, in _exec
        pydev_imports.execfile(file, globals, locals)  # execute the script
      File "F:\IntellIDEA\PyCharm 2019.2.2\helpers\pydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile
        exec(compile(contents+"\n", file, 'exec'), glob, loc)
      File "E:/pythonSpace/byol-a/train.py", line 132, in <module>
        main(audio_dir=base_path + '1/', epochs=100)
      File "E:/pythonSpace/byol-a/train.py", line 112, in main
        learner = BYOLALearner(model, cfg.lr, cfg.shape,
      File "E:/pythonSpace/byol-a/train.py", line 56, in __init__
        self.learner = BYOL(model, image_size=shape, **kwargs)
      File "D:\min\envs\torch1_7_1\lib\site-packages\byol_pytorch\byol_pytorch.py", line 211, in __init__
        self.forward(torch.randn(2, 3, image_size, image_size, device=device))
    TypeError: randn(): argument 'size' must be tuple of ints, but found element of type list at pos 3
    
    Not_an_issue 
    opened by a1030076395 3
  • Question about comments in the train.py

    Question about comments in the train.py

    https://github.com/nttcslab/byol-a/blob/master/train.py

    At line 67, there is comments for the shape of input.

            # in fact, it should be (B, 1, F, T), e.g. (256, 1, 64, 96) where 64 is the number of mel bins
            paired_inputs = torch.cat(paired_inputs) # [(B,1,T,F), (B,1,T,F)] -> (2*B,1,T,F)
    

    image

    However, it is different from the descriptions in config.yml file

    # Shape of loh-mel spectrogram [F, T].
    shape: [64, 96]
    
    bug 
    opened by ChenyangLEI 2
  • Doubt in paper

    Doubt in paper

    Hi there,

    Section 4, subsection A, part 1 from your paper says:

     The number of frames, T, in one segment was 96 in pretraining, which corresponds to 1,014ms. 
    

    However, the previous line says the hop size used was 10ms. So according to this 96 would mean 960ms?

    Am I understanding something wrong here?

    Thank You in advance!

    question 
    opened by Sreyan88 2
  • Random crop is not working.

    Random crop is not working.

    https://github.com/nttcslab/byol-a/blob/60cebdc514951e6b42e18e40a2537a01a39ad47b/byol_a/dataset.py#L80-L82

    If len(wav) > self.unit_length, length_adj will be a negative value. So start will be 0. If wav (before pad) is shorter than unit length, length_adj == 0 after padding. So start is always 0. So It will only perform a certain area of crop from 0 to self.unit_length (cropped_wav == wav[0: self.unit_length]), not random crop.

    So I think line 80 should be changed to length_adj = len(wav) - self.unit_length .

    bug 
    opened by JUiscoming 2
  • Doubt in RunningNorm

    Doubt in RunningNorm

    Hi There, great repo!

    I think I have misunderstood something wrong with the RunningNorm function. The function expects the size of an epoch, however, your implementation passes the size of the entire dataset.

    Is it a bug? Or is there a problem with my understanding?

    Thank You!

    question 
    opened by Sreyan88 2
  • How to interpret the performance

    How to interpret the performance

    Hi, it' s a great work, but how can I understance the performance metric? For example, VoxCeleb1 is usually for speaker verification, shouldn't we measure EER?

    opened by ranchlai 2
  • Finetuning of BYOL-A

    Finetuning of BYOL-A

    Hi,

    your paper is super interesting. I have a question regarding the downstream tasks. If I understand the paper correctly, you used a single linear layer for the downstream tasks which only used the sum of mean and max of the representation over time as input.

    Did you try to finetune BYOL-A end-to-end after pretraining to the downstream tasks? In the case of TRILL they were able to improve the performance even further by finetuning the whole model end-to-end. Is there a specific reason why this is not possible with BYOL-A?

    questions 
    opened by mschiwek 1
  • Missing scaling of validation samples in evaluate.py

    Missing scaling of validation samples in evaluate.py

    https://github.com/nttcslab/byol-a/blob/master/evaluate.py#L112

    It also needs: X_val = scaler.transform(X_val), or validation acc & loss will be invalid. This can be one of the reasons why we see lower performance when I tried to get official performances...

    bug 
    opened by daisukelab 0
Releases(v2.0.0)
Owner
NTT Communication Science Laboratories
NTT Communication Science Laboratories
Lucid library adapted for PyTorch

Lucent PyTorch + Lucid = Lucent The wonderful Lucid library adapted for the wonderful PyTorch! Lucent is not affiliated with Lucid or OpenAI's Clarity

Lim Swee Kiat 520 Dec 26, 2022
Tensorflow Tutorials using Jupyter Notebook

Tensorflow Tutorials using Jupyter Notebook TensorFlow tutorials written in Python (of course) with Jupyter Notebook. Tried to explain as kindly as po

Sungjoon 2.6k Dec 22, 2022
DIT is a DTLS MitM proxy implemented in Python 3. It can intercept, manipulate and suppress datagrams between two DTLS endpoints and supports psk-based and certificate-based authentication schemes (RSA + ECC).

DIT - DTLS Interception Tool DIT is a MitM proxy tool to intercept DTLS traffic. It can intercept, manipulate and/or suppress DTLS datagrams between t

52 Nov 30, 2022
DeRF: Decomposed Radiance Fields

DeRF: Decomposed Radiance Fields Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, Andrea Tagliasacchi Links Paper Project Page Abstract

UBC Computer Vision Group 24 Dec 02, 2022
Video Corpus Moment Retrieval with Contrastive Learning (SIGIR 2021)

Video Corpus Moment Retrieval with Contrastive Learning PyTorch implementation for the paper "Video Corpus Moment Retrieval with Contrastive Learning"

ZHANG HAO 42 Dec 29, 2022
G-NIA model from "Single Node Injection Attack against Graph Neural Networks" (CIKM 2021)

Single Node Injection Attack against Graph Neural Networks This repository is our Pytorch implementation of our paper: Single Node Injection Attack ag

Shuchang Tao 18 Nov 21, 2022
Code of TIP2021 Paper《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet and Pytorch versions.

SFace Code of TIP2021 Paper 《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet, PyTorch and Jittor versi

Zhong Yaoyao 47 Nov 25, 2022
AsymmetricGAN - Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

AsymmetricGAN for Image-to-Image Translation AsymmetricGAN Framework for Multi-Domain Image-to-Image Translation AsymmetricGAN Framework for Hand Gest

Hao Tang 42 Jan 15, 2022
Tool for working with Y-chromosome data from YFull and FTDNA

ycomp ycomp is a tool for working with Y-chromosome data from YFull and FTDNA. Run ycomp -h for information on how to use the program. Installation Th

Alexander Regueiro 2 Jun 18, 2022
Python scripts using the Mediapipe models for Halloween.

Mediapipe-Halloween-Examples Python scripts using the Mediapipe models for Halloween. WHY Mainly for fun. But this repository also includes useful exa

Ibai Gorordo 23 Jan 06, 2023
Public Models considered for emotion estimation from EEG

Emotion-EEG Set of models for emotion estimation from EEG. Composed by the combination of two deep-learing models learning together (RNN and CNN) with

Victor Delvigne 21 Dec 23, 2022
Pytorch implementation of set transformer

set_transformer Official PyTorch implementation of the paper Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks .

Juho Lee 410 Jan 06, 2023
Simple Pixelbot for Diablo 2 Resurrected written in python and opencv.

Simple Pixelbot for Diablo 2 Resurrected written in python and opencv. Obviously only use it in offline mode as it is against the TOS of Blizzard to use it in online mode!

468 Jan 03, 2023
Official source code to CVPR'20 paper, "When2com: Multi-Agent Perception via Communication Graph Grouping"

When2com: Multi-Agent Perception via Communication Graph Grouping This is the PyTorch implementation of our paper: When2com: Multi-Agent Perception vi

34 Nov 09, 2022
Self-labelling via simultaneous clustering and representation learning. (ICLR 2020)

Self-labelling via simultaneous clustering and representation learning 🆗 🆗 🎉 NEW models (20th August 2020): Added standard SeLa pretrained torchvis

Yuki M. Asano 469 Jan 02, 2023
Decensoring Hentai with Deep Neural Networks. Formerly named DeepMindBreak.

DeepCreamPy Decensoring Hentai with Deep Neural Networks. Formerly named DeepMindBreak. A deep learning-based tool to automatically replace censored a

616 Jan 06, 2023
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Official code of Retinal Vessel Segmentation with Pixel-wise Adaptive Filters and Consistency Training (ISBI 2022)

anonymous 14 Oct 27, 2022
Elastic weight consolidation technique for incremental learning.

Overcoming-Catastrophic-forgetting-in-Neural-Networks Elastic weight consolidation technique for incremental learning. About Use this API if you dont

Shivam Saboo 89 Dec 22, 2022
Language model Prompt And Query Archive

LPAQA: Language model Prompt And Query Archive This repository contains data and code for the paper How Can We Know What Language Models Know? Install

127 Dec 20, 2022
Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Xiangyin Kong 7 Nov 08, 2022