Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

Overview

DE-DETRs

By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao

This repository is an official implementation of DE-DETR and DELA-DETR in the paper Towards Data-Efficient Detection Transformers.

For the implementation of DE-CondDETR and DELA-CondDETR, please refer to DE-CondDETR.

Introduction

TL; DR. We identify the data-hungry issue of existing detection transformers and alleviate it by simply alternating how key and value sequences are constructed in the cross-attention layer, with minimum modifications to the original models. Besides, we introduce a simple yet effective label augmentation method to provide richer supervision and improve data efficiency.

DE-DETR

Abstract. Detection Transformers have achieved competitive performance on the sample-rich COCO dataset. However, we show most of them suffer from significant performance drops on small-size datasets, like Cityscapes. In other words, the detection transformers are generally data-hungry. To tackle this problem, we empirically analyze the factors that affect data efficiency, through a step-by-step transition from a data-efficient RCNN variant to the representative DETR. The empirical results suggest that sparse feature sampling from local image areas holds the key. Based on this observation, we alleviate the data-hungry issue of existing detection transformers by simply alternating how key and value sequences are constructed in the cross-attention layer, with minimum modifications to the original models. Besides, we introduce a simple yet effective label augmentation method to provide richer supervision and improve data efficiency. Experiments show that our method can be readily applied to different detection transformers and improve their performance on both small-size and sample-rich datasets.

Label Augmentation

Main Results

The experimental results and model weights trained on Cityscapes are shown below.

Model Epochs mAP [email protected] [email protected] [email protected] [email protected] [email protected] Log & Model
DETR 300 11.7 26.5 9.3 2.6 9.2 25.6 Google Drive
DE-DETR 50 22.2 41.7 20.5 4.9 19.7 40.8 Google Drive
DELA-DETR 50 25.2 46.8 22.8 6.5 23.8 44.3 Google Drive

The experimental results and model weights trained on COCO 2017 are shown below.

Model Epochs mAP [email protected] [email protected] [email protected] [email protected] [email protected] Log & Model
DETR 50 33.6 54.6 34.2 13.2 35.7 53.5 Google Drive
DE-DETR 50 40.2 60.4 43.2 23.3 42.1 56.4 Google Drive
DELA-DETR 50 41.9 62.6 44.8 24.9 44.9 56.8 Google Drive

Note:

  1. The number of queries is increased from 100 to 300 in DELA-DETR.
  2. The performance of the model weights on Cityscapes is slightly different from that reported in the paper, because the results in the paper are the average of five repeated runs with different random seeds.

Installation

Requirements

  • Linux, CUDA>=9.2, GCC>=5.4

  • Python>=3.7

  • PyTorch>=1.5.0, torchvision>=0.6.0 (following instructions here)

  • Detectron2>=0.5 for RoIAlign (following instructions here)

  • Other requirements

    pip install -r requirements.txt

Usage

Dataset preparation

The COCO 2017 dataset can be downloaded from here and the Cityscapes datasets can be downloaded from here. The annotations in COCO format can be obtained from here. Afterward, please organize the datasets and annotations as following:

data
└─ cityscapes
   └─ leftImg8bit
      |─ train
      └─ val
└─ coco
   |─ annotations
   |─ train2017
   └─ val2017
└─ CocoFormatAnnos
   |─ cityscapes_train_cocostyle.json
   |─ cityscapes_val_cocostyle.json
   |─ instances_train2017_sample11828.json
   |─ instances_train2017_sample5914.json
   |─ instances_train2017_sample2365.json
   └─ instances_train2017_sample1182.json

The annotations for down-sampled COCO 2017 dataset is generated using utils/downsample_coco.py

Training

Training DELA-DETR on Cityscapes

python -m torch.distributed.launch --nproc_per_node=2 --master_port=29501 --use_env main.py --dataset_file cityscapes --coco_path data/cityscapes --batch_size 4 --model dela-detr --repeat_label 2 --nms --num_queries 300 --wandb

Training DELA-DETR on down-sampled COCO 2017, with e.g. sample_rate=0.01

python -m torch.distributed.launch --nproc_per_node=2 --master_port=29501 --use_env main.py --dataset_file cocodown --coco_path data/coco --sample_rate 0.01 --batch_size 4 --model dela-detr --repeat_label 2 --nms --num_queries 300 --wandb

Training DELA-DETR on COCO 2017

python -m torch.distributed.launch --nproc_per_node=8 --master_port=29501 --use_env main.py --dataset_file coco --coco_path data/coco --batch_size 4 --model dela-detr --repeat_label 2 --nms --num_queries 300 --wandb

Training DE-DETR on Cityscapes

python -m torch.distributed.launch --nproc_per_node=2 --master_port=29501 --use_env main.py --dataset_file cityscapes --coco_path data/cityscapes --batch_size 4 --model de-detr --wandb

Training DETR baseline

Please refer to the detr branch.

Evaluation

You can get the pretrained model (the link is in "Main Results" session), then run following command to evaluate it on the validation set:

<training command> --resume <path to pre-trained model> --eval

Acknowledgement

This project is based on DETR and Deformable DETR. Thanks for their wonderful works. See LICENSE for more details.

Citing DE-DETRs

If you find DE-DETRs useful in your research, please consider citing:

@misc{wang2022towards,
      title={Towards Data-Efficient Detection Transformers}, 
      author={Wen Wang and Jing Zhang and Yang Cao and Yongliang Shen and Dacheng Tao},
      year={2022},
      eprint={2203.09507},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Wen Wang
Wen Wang
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction The dataset contains 3 million attribute-value annotations across 1257 unique ca

Google Research Datasets 89 Jan 08, 2023
Implementation of Deep Deterministic Policy Gradiet Algorithm in Tensorflow

ddpg-aigym Deep Deterministic Policy Gradient Implementation of Deep Deterministic Policy Gradiet Algorithm (Lillicrap et al.arXiv:1509.02971.) in Ten

Steven Spielberg P 247 Dec 07, 2022
Eff video representation - Efficient video representation through neural fields

Neural Residual Flow Fields for Efficient Video Representations 1. Download MPI

41 Jan 06, 2023
Efficient and intelligent interactive segmentation annotation software

Efficient and intelligent interactive segmentation annotation software

294 Dec 30, 2022
FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI 声明: 本项目仅限于学习交流,不可用于非法用途,包括但不限于:用于游戏外挂等,使用本项目产生的任何后果与本人无关! 简介 本项目基于yolov5,实现了一款FPS类游戏(CF、CSGO等)的自瞄AI,本项目旨在使用现

Fabian 246 Dec 28, 2022
SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking

SPLADE 🍴 + 🥄 = 🔎 This repository contains the weights for four models as well as the code for running inference for our two papers: [v1]: SPLADE: S

NAVER 170 Dec 28, 2022
This is the code of using DQN to play Sekiro .

Update for using DQN to play sekiro 2021.2.2(English Version) This is the code of using DQN to play Sekiro . I am very glad to tell that I have writen

144 Dec 25, 2022
The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.

Published by SpaceML • About SpaceML • Quick Colab Example Self-Supervised Learner The Self-Supervised Learner can be used to train a classifier with

SpaceML 92 Nov 30, 2022
Implementation of paper "Graph Condensation for Graph Neural Networks"

GCond A PyTorch implementation of paper "Graph Condensation for Graph Neural Networks" Code will be released soon. Stay tuned :) Abstract We propose a

Wei Jin 66 Dec 04, 2022
Code for models used in Bashiri et al., "A Flow-based latent state generative model of neural population responses to natural images".

A Flow-based latent state generative model of neural population responses to natural images Code for "A Flow-based latent state generative model of ne

Sinz Lab 5 Aug 26, 2022
DL course co-developed by YSDA, HSE and Skoltech

Deep learning course This repo supplements Deep Learning course taught at YSDA and HSE @fall'21. For previous iteration visit the spring21 branch. Lec

Yandex School of Data Analysis 1.3k Dec 30, 2022
Generating Images with Recurrent Adversarial Networks

Generating Images with Recurrent Adversarial Networks Python (Theano) implementation of Generating Images with Recurrent Adversarial Networks code pro

Daniel Jiwoong Im 121 Sep 08, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
A light weight data augmentation tool for training CNNs and Viola Jones detectors

hey-daug A light weight data augmentation tool for training CNNs and Viola Jones detectors (Haar Cascades). This tool inflates your data by up to six

Jaiyam Sharma 2 Nov 23, 2019
Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition (AGRA, ACM 2020, Oral)

Cross Domain Facial Expression Recognition Benchmark Implementation of papers: Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchm

89 Dec 09, 2022
Losslandscapetaxonomy - Taxonomizing local versus global structure in neural network loss landscapes

Taxonomizing local versus global structure in neural network loss landscapes Int

Yaoqing Yang 8 Dec 30, 2022
Real-time Joint Semantic Reasoning for Autonomous Driving

MultiNet MultiNet is able to jointly perform road segmentation, car detection and street classification. The model achieves real-time speed and state-

Marvin Teichmann 518 Dec 12, 2022
Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems This is our experimental code for RecSys 2021 paper "Learning

11 Jul 28, 2022
Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance

Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance Project Page | Paper | Data This repository contains an implementatio

Lior Yariv 521 Dec 30, 2022
Comp445 project - Data Communications & Computer Networks

COMP-445 Data Communications & Computer Networks Change Python version in Conda

Peng Zhao 2 Oct 03, 2022