Official PyTorch implementation of SyntaSpeech (IJCAI 2022)

Overview

SyntaSpeech: Syntax-Aware Generative Adversarial Text-to-Speech

arXiv | GitHub Stars | downloads | Hugging Face | 中文文档

This repository is the official PyTorch implementation of our IJCAI-2022 paper, in which we propose SyntaSpeech for syntax-aware non-autoregressive Text-to-Speech.



Our SyntaSpeech is built on the basis of PortaSpeech (NeurIPS 2021) with three new features:

  1. We propose Syntactic Graph Builder (Sec. 3.1) and Syntactic Graph Encoder (Sec. 3.2), which is proved to be an effective unit to extract syntactic features to improve the prosody modeling and duration accuracy of TTS model.
  2. We introduce Multi-Length Adversarial Training (Sec. 3.3), which could replace the flow-based post-net in PortaSpeech, speeding up the inference time and improving the audio quality naturalness.
  3. We support three datasets: LJSpeech (single-speaker English dataset), Biaobei (single-speaker Chinese dataset) , and LibriTTS (multi-speaker English dataset).

Environments

conda create -n synta python=3.7
condac activate synta
pip install -U pip
pip install Cython numpy==1.19.1
pip install torch==1.9.0 
pip install -r requirements.txt
# install dgl for graph neural network, dgl-cu102 supports rtx2080, dgl-cu113 support rtx3090
pip install dgl-cu102 dglgo -f https://data.dgl.ai/wheels/repo.html 
sudo apt install -y sox libsox-fmt-mp3
bash mfa_usr/install_mfa.sh # install force alignment tools

Run SyntaSpeech!

Please follow the following steps to run this repo.

1. Preparation

Data Preparation

You can directly use our binarized datasets for LJSpeech and Biaobei. Download them and unzip them into the data/binary/ folder.

As for LibriTTS, you can download the raw datasets and process them with our data_gen modules. Detailed instructions can be found in dosc/prepare_data.

Vocoder Preparation

We provide the pre-trained model of vocoders for three datasets. Specifically, Hifi-GAN for LJSpeech and Biaobei, ParallelWaveGAN for LibriTTS. Download and unzip them into the checkpoints/ folder.

2. Training Example

Then you can train SyntaSpeech in the three datasets.

cd <the root_dir of your SyntaSpeech folder>
export PYTHONPATH=./
CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config egs/tts/lj/synta.yaml --exp_name lj_synta --reset # training in LJSpeech
CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config egs/tts/biaobei/synta.yaml --exp_name biaobei_synta --reset # training in Biaobei
CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config egs/tts/biaobei/synta.yaml --exp_name libritts_synta --reset # training in LibriTTS

3. Tensorboard

tensorboard --logdir=checkpoints/lj_synta
tensorboard --logdir=checkpoints/biaobei_synta
tensorboard --logdir=checkpoints/libritts_synta

4. Inference Example

CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config egs/tts/lj/synta.yaml --exp_name lj_synta --reset --infer # inference in LJSpeech
CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config egs/tts/biaobei/synta.yaml --exp_name biaobei_synta --reset --infer # inference in Biaobei
CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config egs/tts/biaobei/synta.yaml --exp_name libritts_synta --reset ---infer # inference in LibriTTS

Audio Demos

Audio samples in the paper can be found in our demo page.

We also provide HuggingFace Demo Page for LJSpeech. Try your interesting sentences there!

Citation

@article{ye2022syntaspeech,
  title={SyntaSpeech: Syntax-Aware Generative Adversarial Text-to-Speech},
  author={Ye, Zhenhui and Zhao, Zhou and Ren, Yi and Wu, Fei},
  journal={arXiv preprint arXiv:2204.11792},
  year={2022}
}

Acknowledgements

Our codes are based on the following repos:

Comments
  • pinyin preprocess problem

    pinyin preprocess problem

    005804 你当#1我傻啊#3?脑子#1那么大#2怎么#1塞进去#4? ni3 dang1 wo2 sha3 a5 nao3 zi5 na4 me5 da4 zen3 me5 sai1 jin4 qu4

    txt_struct=[['', ['']], ['你', ['n', 'i3']], ['当', ['d', 'ang1']], ['我', ['uo3']], ['傻', ['sh', 'a3']], ['啊', ['a', '?', 'n', 'ao3']], ['?', ['z', 'i']], ['脑', ['n', 'a4']], ['子', ['m', 'e']], ['那', ['d', 'a4']], ['么', ['z', 'en3']], ['大', ['m', 'e']], ['怎', ['s', 'ai1']], ['么', ['j', 'in4']], ['塞', ['q', 'v4', '?']], ['进', []], ['去', []], ['?', []], ['', ['']]]

    ph_gb_word=['', 'n_i3', 'd_ang1', 'uo3', 'sh_a3', 'a_?n_ao3', 'z_i', 'n_a4', 'm_e', 'd_a4', 'z_en3', 'm_e', 's_ai1', 'j_in4', 'q_v4?', '', '', '', '']

    what is 'a_?_n_ao3'

    in the mfa_dict it appears ch_a1_d_ou1 ,a_?_n_ao3 and so on

    opened by windowxiaoming 2
  • discriminator output['y_c'] never used

    discriminator output['y_c'] never used

    Discriminator's output['y_c'] never used, and never calculated in discriminator forward func. What does this variable mean? https://github.com/yerfor/SyntaSpeech/blob/5b07439633a3e714d2a6759ea4097eb36d6cd99a/tasks/tts/synta.py#L81

    opened by mayfool 2
  • A question of KL divergence calculation

    A question of KL divergence calculation

    In modules/tts/portaspeech/fvae.py, SyntaFVAE compute loss_kl (line 121) , Can someone help explain why loss_kl = ((logqx - logpx) * nonpadding_sqz).sum() / nonpadding_sqz.sum() / logqx.shape[1],I think loss_kl should be compute by loss_kl = logqx.exp()*(logqx - logpx) I would be very grateful if you could reply to me!

    opened by JiaYK 2
  • mfa for multi speaker.

    mfa for multi speaker.

    In the code, group MFA inputs for better parallelism. For multi speaker, it maybe go wrong. For input g_uang3 zh_ou1 n_v3 d_a4 x_ve2 sh_eng1 d_eng1 sh_an1 sh_i1 l_ian2 s_i4 t_ian1 j_ing3 f_ang1 zh_ao3 d_ao4 i2 s_i4 n_v3 sh_i1. The TexGrid is

    	item [1]:
    		class = "IntervalTier"
    		name = "words"
    		xmin = 0.0
    		xmax = 9.4444
    		intervals: size = 56
    			intervals [1]:
    				xmin = 0
    				xmax = 0.5700000000000001
    				text = ""
    			intervals [2]:
    				xmin = 0.5700000000000001
    				xmax = 0.61
    				text = "eng"
    			intervals [3]:
    				xmin = 0.61
    				xmax = 0.79
    				text = "s_an1"
    			intervals [4]:
    				xmin = 0.79
    				xmax = 0.89
    				text = "eng"
    			intervals [5]:
    				xmin = 0.89
    				xmax = 1.06
    				text = "i1"
    			intervals [6]:
    				xmin = 1.06
    				xmax = 1.24
    				text = "eng"
    			intervals [7]:
    				xmin = 1.24
    				xmax = 1.3
    				text = ""
    			intervals [8]:
    				xmin = 1.3
    				xmax = 1.36
    				text = "s_an1"
    			intervals [9]:
    				xmin = 1.36
    				xmax = 1.42
    				text = ""
    			intervals [10]:
    				xmin = 1.42
    				xmax = 1.49
    				text = "eng"
    			intervals [11]:
    				xmin = 1.49
    				xmax = 1.67
    				text = "s_i4"
    			intervals [12]:
    				xmin = 1.67
    				xmax = 1.78
    				text = "eng"
    			intervals [13]:
    				xmin = 1.78
    				xmax = 1.91
    				text = ""
    			intervals [14]:
    				xmin = 1.91
    				xmax = 1.96
    				text = "er4"
    			intervals [15]:
    				xmin = 1.96
    				xmax = 2.06
    				text = "eng"
    			intervals [16]:
    				xmin = 2.06
    				xmax = 2.19
    				text = ""
    			intervals [17]:
    				xmin = 2.19
    				xmax = 2.35
    				text = "i1"
    			intervals [18]:
    				xmin = 2.35
    				xmax = 2.53
    				text = "eng"
    			intervals [19]:
    				xmin = 2.53
    				xmax = 3.03
    				text = "i1"
    			intervals [20]:
    				xmin = 3.03
    				xmax = 3.42
    				text = "eng"
    			intervals [21]:
    				xmin = 3.42
    				xmax = 3.48
    				text = "i1"
    			intervals [22]:
    				xmin = 3.48
    				xmax = 3.6
    				text = ""
    			intervals [23]:
    				xmin = 3.6
    				xmax = 3.64
    				text = "eng"
    			intervals [24]:
    				xmin = 3.64
    				xmax = 3.86
    				text = "i1"
    			intervals [25]:
    				xmin = 3.86
    				xmax = 3.99
    				text = "eng"
    			intervals [26]:
    				xmin = 3.99
    				xmax = 4.59
    				text = ""
    			intervals [27]:
    				xmin = 4.59
    				xmax = 4.869999999999999
    				text = "er4"
    			intervals [28]:
    				xmin = 4.869999999999999
    				xmax = 4.9799999999999995
    				text = "eng"
    			intervals [29]:
    				xmin = 4.9799999999999995
    				xmax = 5.1899999999999995
    				text = "s_i4"
    			intervals [30]:
    				xmin = 5.1899999999999995
    				xmax = 5.34
    				text = ""
    			intervals [31]:
    				xmin = 5.34
    				xmax = 5.43
    				text = "eng"
    			intervals [32]:
    				xmin = 5.43
    				xmax = 5.6
    				text = ""
    			intervals [33]:
    				xmin = 5.6
    				xmax = 5.76
    				text = "i1"
    			intervals [34]:
    				xmin = 5.76
    				xmax = 6.279999999999999
    				text = "eng"
    			intervals [35]:
    				xmin = 6.279999999999999
    				xmax = 6.359999999999999
    				text = "s_an1"
    			intervals [36]:
    				xmin = 6.359999999999999
    				xmax = 6.47
    				text = ""
    			intervals [37]:
    				xmin = 6.47
    				xmax = 6.6
    				text = "eng"
    			intervals [38]:
    				xmin = 6.6
    				xmax = 6.9399999999999995
    				text = "i1"
    			intervals [39]:
    				xmin = 6.9399999999999995
    				xmax = 7.039999999999999
    				text = "eng"
    			intervals [40]:
    				xmin = 7.039999999999999
    				xmax = 7.289999999999999
    				text = "s_an1"
    			intervals [41]:
    				xmin = 7.289999999999999
    				xmax = 7.369999999999999
    				text = "eng"
    			intervals [42]:
    				xmin = 7.369999999999999
    				xmax = 7.6
    				text = "s_i4"
    			intervals [43]:
    				xmin = 7.6
    				xmax = 7.699999999999999
    				text = "eng"
    			intervals [44]:
    				xmin = 7.699999999999999
    				xmax = 7.869999999999999
    				text = ""
    			intervals [45]:
    				xmin = 7.869999999999999
    				xmax = 8.049999999999999
    				text = "er4"
    			intervals [46]:
    				xmin = 8.049999999999999
    				xmax = 8.26
    				text = ""
    			intervals [47]:
    				xmin = 8.26
    				xmax = 8.299999999999999
    				text = "eng"
    			intervals [48]:
    				xmin = 8.299999999999999
    				xmax = 8.36
    				text = "s_i4"
    			intervals [49]:
    				xmin = 8.36
    				xmax = 8.389999999999999
    				text = ""
    			intervals [50]:
    				xmin = 8.389999999999999
    				xmax = 8.42
    				text = "eng"
    			intervals [51]:
    				xmin = 8.42
    				xmax = 8.45
    				text = ""
    			intervals [52]:
    				xmin = 8.45
    				xmax = 8.59
    				text = "s_an1"
    			intervals [53]:
    				xmin = 8.59
    				xmax = 8.83
    				text = ""
    			intervals [54]:
    				xmin = 8.83
    				xmax = 9.1
    				text = "eng"
    			intervals [55]:
    				xmin = 9.1
    				xmax = 9.44
    				text = "i1"
    			intervals [56]:
    				xmin = 9.44
    				xmax = 9.4444
    				text = ""
    
    opened by leon2milan 2
  • Problem with DDP

    Problem with DDP

    Hello, I have experimented on your excellent job with this repo. But I found the ddp is not effective. I wonder if the way I used is wrong?

    CUDA_VISIBLE_DEVICES=0,1,2 python -m torch.distributed.launch --nproc_per_node 3 tasks/run.py --config //fs.yaml --exp_name fs_test_demo --reset

    opened by zhazl 0
Releases(v1.0.0)
Owner
Zhenhui YE
I am currently a second-year computer science Ph.D student at Zhejiang University, working on deep learning and reinforcement learning.
Zhenhui YE
ServiceX Transformer that converts flat ROOT ntuples into columnwise data

ServiceX_Uproot_Transformer ServiceX Transformer that converts flat ROOT ntuples into columnwise data Usage You can invoke the transformer from the co

Vis 0 Jan 20, 2022
Combinatorial model of ligand-receptor binding

Combinatorial model of ligand-receptor binding The binding of ligands to receptors is the starting point for many import signal pathways within a cell

Mobolaji Williams 0 Jan 09, 2022
Differential fuzzing for the masses!

NEZHA NEZHA is an efficient and domain-independent differential fuzzer developed at Columbia University. NEZHA exploits the behavioral asymmetries bet

147 Dec 05, 2022
People movement type classifier with YOLOv4 detection and SORT tracking.

Movement classification The goal of this project would be movement classification of people, in other words, walking (normal and fast) and running. Yo

4 Sep 21, 2021
A simple, fast, and efficient object detector without FPN

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides an implementation for

789 Jan 09, 2023
PyTorch Code for the paper "VSE++: Improving Visual-Semantic Embeddings with Hard Negatives"

Improving Visual-Semantic Embeddings with Hard Negatives Code for the image-caption retrieval methods from VSE++: Improving Visual-Semantic Embeddings

Fartash Faghri 441 Dec 05, 2022
This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.

Multimodal Deep Learning 🎆 🎆 🎆 Announcing the multimodal deep learning repository that contains implementation of various deep learning-based model

Deep Cognition and Language Research (DeCLaRe) Lab 398 Dec 30, 2022
Supporting code for "Autoregressive neural-network wavefunctions for ab initio quantum chemistry".

naqs-for-quantum-chemistry This repository contains the codebase developed for the paper Autoregressive neural-network wavefunctions for ab initio qua

Tom Barrett 24 Dec 23, 2022
FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning

FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning (FedML) developed and maintained by Scaleout Systems. FEDn enables highly scalable cross-silo and cr

Scaleout 75 Nov 09, 2022
The final project of "Applying AI to EHR Data" of "AI for Healthcare" nanodegree - Udacity.

Patient Selection for Diabetes Drug Testing Project Overview EHR data is becoming a key source of real-world evidence (RWE) for the pharmaceutical ind

Omar Laham 1 Jan 14, 2022
A Python library created to assist programmers with complex mathematical functions

libmaths libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 02, 2022
NeuralForecast is a Python library for time series forecasting with deep learning models

NeuralForecast is a Python library for time series forecasting with deep learning models. It includes benchmark datasets, data-loading utilities, evaluation functions, statistical tests, univariate m

Nixtla 1.1k Jan 03, 2023
[TOG 2021] PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling.

This repository contains the official PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling. We propose a SofGAN image generator to decouple the latent space o

Anpei Chen 694 Dec 23, 2022
Image classification for projects and researches

This is a tool to help you quickly solve classification problems including: data analysis, training, report results and model explanation.

Nguyễn Trường Lâu 2 Dec 27, 2021
Code release for SLIP Self-supervision meets Language-Image Pre-training

SLIP: Self-supervision meets Language-Image Pre-training What you can find in this repo: Pre-trained models (with ViT-Small, Base, Large) and code to

Meta Research 621 Dec 31, 2022
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).

MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an

Simiao Zuo 34 Dec 24, 2022
SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer

SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer A novel graph neural network (GNN) based model (termed SlideGraph+

28 Dec 24, 2022
Welcome to The Eigensolver Quantum School, a quantum computing crash course designed by students for students.

TEQS Welcome to The Eigensolver Quantum School, a crash course designed by students for students. The aim of this program is to take someone who has n

The Eigensolvers 53 May 18, 2022
Official Pytorch implementation of Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations

Scene Representation Networks This is the official implementation of the NeurIPS submission "Scene Representation Networks: Continuous 3D-Structure-Aw

Vincent Sitzmann 365 Jan 06, 2023