snappi-trex is a snappi plugin that allows executing scripts written using snappi with Cisco's TRex Traffic Generator

Related tags

Networkingsnappi-trex
Overview

snappi-trex

license Project Status: Active – The project has reached a stable, usable state and is being actively developed. Build Total alerts Language grade: Python pypi python

snappi-trex is a snappi plugin that allows executing scripts written using snappi with Cisco's TRex Traffic Generator

Design

snappi-trex converts snappi Open Traffic Generator API configuration into the equivalent TRex STL Client configuration. This allows users to use the TRex Traffic Generator and its useful features without having to write complex TRex scripts.

diagram

The above diagram outlines the overall process of how the snappi Open Traffic Generator API is able to interface with TRex and generate traffic over its network interfaces. snappi-trex is essential to convert snappi scripts into the equivalent TRex STL Client instructions.


snappi-trex usage follows the standard usage of snappi with a few modifications outlined in the Usage document.

Demos

Click here for the Quickstart Guide Video Tutorial

  • This goes over the installation and setup for snappi-trex, and how to run a basic snappi script using snappi-trex

Click here for the snappi-trex P4 PTF Demo

  • This demonstrates snappi-trex being used with the P4 Packet Testing Framework in a 4 Port Mesh configuration

Table of Contents


Quickstart

snappi-trex is a snappi plugin that allows executing scripts written using snappi with Cisco's TRex Traffic Generator


--> Click here for the Quickstart Guide Video Tutorial


Installing and Running TRex

TRex must be installed and running before proceeding

TRex must be installed and configured in order to use snappi-trex. For a quick tutorial on TRex installation, running, and basic usage, check out my TRex Tutorial


Installing snappi-trex

Make sure python-pip3 is installed

sudo apt-get install python3-pip

Install snappi and the snappi-trex extension

pip3 install snappi==0.4.26 snappi[trex]

Start Scripting

Let's run our first script called hello_snappi_trex.py: A basic snappi script that transmits 1000 UDP packets bidirectionally between two ports and verifies that they are received. This file can be found at examples/hello_snappi_trex.py in the snappi-trex Github Repo.

git clone https://github.com/open-traffic-generator/snappi-trex
python3 snappi-trex/examples/hello_snappi_trex.py

You may also just paste the script in from below.

hello_snappi_trex.py
p2').flow(name='flow p2->p1') # and assign source and destination ports for each f1.tx_rx.port.tx_name, f1.tx_rx.port.rx_name = p1.name, p2.name f2.tx_rx.port.tx_name, f2.tx_rx.port.rx_name = p2.name, p1.name # configure packet size, rate and duration for both flows f1.size.fixed, f2.size.fixed = 128, 256 for f in cfg.flows: # send 1000 packets and stop f.duration.fixed_packets.packets = 1000 # send 1000 packets per second f.rate.pps = 1000 # configure packet with Ethernet, IPv4 and UDP headers for both flows eth1, ip1, udp1 = f1.packet.ethernet().ipv4().udp() eth2, ip2, udp2 = f2.packet.ethernet().ipv4().udp() # set source and destination MAC addresses eth1.src.value, eth1.dst.value = '00:AA:00:00:04:00', '00:AA:00:00:00:AA' eth2.src.value, eth2.dst.value = '00:AA:00:00:00:AA', '00:AA:00:00:04:00' # set source and destination IPv4 addresses ip1.src.value, ip1.dst.value = '10.0.0.1', '10.0.0.2' ip2.src.value, ip2.dst.value = '10.0.0.2', '10.0.0.1' # set incrementing port numbers as source UDP ports udp1.src_port.increment.start = 5000 udp1.src_port.increment.step = 2 udp1.src_port.increment.count = 10 udp2.src_port.increment.start = 6000 udp2.src_port.increment.step = 4 udp2.src_port.increment.count = 10 # assign list of port numbers as destination UDP ports udp1.dst_port.values = [4000, 4044, 4060, 4074] udp2.dst_port.values = [8000, 8044, 8060, 8074, 8082, 8084] print('Pushing traffic configuration ...') api.set_config(cfg) print('Starting packet capture on all configured ports ...') cs = api.capture_state() cs.state = cs.START api.set_capture_state(cs) print('Starting transmit on all configured flows ...') ts = api.transmit_state() ts.state = ts.START api.set_transmit_state(ts) print('Checking metrics on all configured ports ...') print('Expected\tTotal Tx\tTotal Rx') assert wait_for(lambda: metrics_ok(api, cfg)), 'Metrics validation failed!' assert captures_ok(api, cfg), 'Capture validation failed!' print('Test passed !') def metrics_ok(api, cfg): # create a port metrics request and filter based on port names req = api.metrics_request() req.port.port_names = [p.name for p in cfg.ports] # include only sent and received packet counts req.port.column_names = [req.port.FRAMES_TX, req.port.FRAMES_RX] # fetch port metrics res = api.get_metrics(req) # calculate total frames sent and received across all configured ports total_tx = sum([m.frames_tx for m in res.port_metrics]) total_rx = sum([m.frames_rx for m in res.port_metrics]) expected = sum([f.duration.fixed_packets.packets for f in cfg.flows]) print('%d\t\t%d\t\t%d' % (expected, total_tx, total_rx)) return expected == total_tx and total_rx >= expected def captures_ok(api, cfg): import dpkt print('Checking captured packets on all configured ports ...') print('Port Name\tExpected\tUDP packets') result = [] for p in cfg.ports: exp, act = 1000, 0 # create capture request and filter based on port name req = api.capture_request() req.port_name = p.name # fetch captured pcap bytes and feed it to pcap parser dpkt pcap = dpkt.pcap.Reader(api.get_capture(req)) for _, buf in pcap: # check if current packet is a valid UDP packet eth = dpkt.ethernet.Ethernet(buf) if isinstance(eth.data.data, dpkt.udp.UDP): act += 1 print('%s\t\t%d\t\t%d' % (p.name, exp, act)) result.append(exp == act) return all(result) def wait_for(func, timeout=10, interval=0.2): """ Keeps calling the `func` until it returns true or `timeout` occurs every `interval` seconds. """ import time start = time.time() while time.time() - start <= timeout: if func(): return True time.sleep(interval) print('Timeout occurred !') return False if __name__ == '__main__': hello_snappi_trex() ">
import snappi
import sys, os

# Replace v2.90 with the installed version of TRex. 
# Change '/opt/trex' if you installed TRex in another location
trex_path = '/opt/trex/v2.90/automation/trex_control_plane/interactive'
sys.path.insert(0, os.path.abspath(trex_path))


def hello_snappi_trex():
    """
    This script does following:
    - Send 1000 packets back and forth between the two ports at a rate of
      1000 packets per second.
    - Validate that total packets sent and received on both interfaces is as
      expected using port metrics.
    - Validate that captured UDP packets on both the ports are as expected.
    """
    # create a new API instance where host points to controller
    api = snappi.api(ext='trex')
    # and an empty traffic configuration to be pushed to controller later on
    cfg = api.config()

    # add two ports where location points to traffic-engine (aka ports)
    p1, p2 = (
        cfg.ports
        .port(name='p1')
        .port(name='p2')
    )

    # add layer 1 property to configure same speed on both ports
    ly = cfg.layer1.layer1(name='ly')[-1]
    ly.port_names = [p1.name, p2.name]
    ly.speed = ly.SPEED_1_GBPS

    # enable packet capture on both ports
    cp = cfg.captures.capture(name='cp')[-1]
    cp.port_names = [p1.name, p2.name]

    # add two traffic flows
    f1, f2 = cfg.flows.flow(name='flow p1->p2').flow(name='flow p2->p1')
    # and assign source and destination ports for each
    f1.tx_rx.port.tx_name, f1.tx_rx.port.rx_name = p1.name, p2.name
    f2.tx_rx.port.tx_name, f2.tx_rx.port.rx_name = p2.name, p1.name

    # configure packet size, rate and duration for both flows
    f1.size.fixed, f2.size.fixed = 128, 256
    for f in cfg.flows:
        # send 1000 packets and stop
        f.duration.fixed_packets.packets = 1000
        # send 1000 packets per second
        f.rate.pps = 1000

    # configure packet with Ethernet, IPv4 and UDP headers for both flows
    eth1, ip1, udp1 = f1.packet.ethernet().ipv4().udp()
    eth2, ip2, udp2 = f2.packet.ethernet().ipv4().udp()

    # set source and destination MAC addresses
    eth1.src.value, eth1.dst.value = '00:AA:00:00:04:00', '00:AA:00:00:00:AA'
    eth2.src.value, eth2.dst.value = '00:AA:00:00:00:AA', '00:AA:00:00:04:00'

    # set source and destination IPv4 addresses
    ip1.src.value, ip1.dst.value = '10.0.0.1', '10.0.0.2'
    ip2.src.value, ip2.dst.value = '10.0.0.2', '10.0.0.1'

    # set incrementing port numbers as source UDP ports
    udp1.src_port.increment.start = 5000
    udp1.src_port.increment.step = 2
    udp1.src_port.increment.count = 10

    udp2.src_port.increment.start = 6000
    udp2.src_port.increment.step = 4
    udp2.src_port.increment.count = 10

    # assign list of port numbers as destination UDP ports
    udp1.dst_port.values = [4000, 4044, 4060, 4074]
    udp2.dst_port.values = [8000, 8044, 8060, 8074, 8082, 8084]

    print('Pushing traffic configuration ...')
    api.set_config(cfg)

    print('Starting packet capture on all configured ports ...')
    cs = api.capture_state()
    cs.state = cs.START
    api.set_capture_state(cs)

    print('Starting transmit on all configured flows ...')
    ts = api.transmit_state()
    ts.state = ts.START
    api.set_transmit_state(ts)

    print('Checking metrics on all configured ports ...')
    print('Expected\tTotal Tx\tTotal Rx')
    assert wait_for(lambda: metrics_ok(api, cfg)), 'Metrics validation failed!'

    assert captures_ok(api, cfg), 'Capture validation failed!'

    print('Test passed !')


def metrics_ok(api, cfg):
    # create a port metrics request and filter based on port names
    req = api.metrics_request()
    req.port.port_names = [p.name for p in cfg.ports]
    # include only sent and received packet counts
    req.port.column_names = [req.port.FRAMES_TX, req.port.FRAMES_RX]

    # fetch port metrics
    res = api.get_metrics(req)
    # calculate total frames sent and received across all configured ports
    total_tx = sum([m.frames_tx for m in res.port_metrics])
    total_rx = sum([m.frames_rx for m in res.port_metrics])
    expected = sum([f.duration.fixed_packets.packets for f in cfg.flows])

    print('%d\t\t%d\t\t%d' % (expected, total_tx, total_rx))

    return expected == total_tx and total_rx >= expected


def captures_ok(api, cfg):
    import dpkt
    print('Checking captured packets on all configured ports ...')
    print('Port Name\tExpected\tUDP packets')

    result = []
    for p in cfg.ports:
        exp, act = 1000, 0
        # create capture request and filter based on port name
        req = api.capture_request()
        req.port_name = p.name
        # fetch captured pcap bytes and feed it to pcap parser dpkt
        pcap = dpkt.pcap.Reader(api.get_capture(req))
        for _, buf in pcap:
            # check if current packet is a valid UDP packet
            eth = dpkt.ethernet.Ethernet(buf)
            if isinstance(eth.data.data, dpkt.udp.UDP):
                act += 1

        print('%s\t\t%d\t\t%d' % (p.name, exp, act))
        result.append(exp == act)

    return all(result)


def wait_for(func, timeout=10, interval=0.2):
    """
    Keeps calling the `func` until it returns true or `timeout` occurs
    every `interval` seconds.
    """
    import time
    start = time.time()

    while time.time() - start <= timeout:
        if func():
            return True
        time.sleep(interval)

    print('Timeout occurred !')
    return False


if __name__ == '__main__':
    hello_snappi_trex()


Output

If everything is working correctly, you should see a similar output as this.

Pushing traffic configuration ...
Starting packet capture on all configured ports ...
Starting transmit on all configured flows ...
Checking metrics on all configured ports ...
Expected        Total Tx        Total Rx
2000            19              17
2000            445             437
2000            881             881
2000            1325            1325
2000            1761            1761
2000           2000            2000
Checking captured packets on all configured ports ...
Port Name       Expected        UDP packets
p1              1000            1000
p2              1000            1000
Test passed !
You might also like...
These scripts send notifications to a Webex space when a new IP is banned by Expressway, and allow to request more info or change the ban status
These scripts send notifications to a Webex space when a new IP is banned by Expressway, and allow to request more info or change the ban status

Spam Call and Toll Fraud Mitigation Cisco Expressway release X14 is able to mitigate spam calls and toll fraud attempts by jailing the spam IP address

A repository dedicated to IoT(internet of things ) and python scripts
A repository dedicated to IoT(internet of things ) and python scripts

📑 Introduction Week of Learning is a weekly program in which you will get all the necessary knowledge about Circuit-Building, Arduino and Micro-Contr

Repo used to maintain all notes and scripts developed during my DevNet Expert studies

DevNet Expert Studies Exam Date: TBD (Waiting for registration to open) This repository will be used to track my progress and maintain all notes/scrip

 Python Scripts for Cisco Identity Services Engine (ISE)
Python Scripts for Cisco Identity Services Engine (ISE)

A set of Python scripts to configure a freshly installed Cisco Identity Services Engine (ISE) for simple operation; in my case, a basic Cisco Software-Defined Access environment.

DataShare - Simple library for data sharing between scripts and public functions calling

DataShare - Simple library for data sharing between scripts and public functions calling. Installation. Install code, Delete LICENSE, README, readme.t

Python Scrcpy Client - allows you to view and control android device in realtime
Python Scrcpy Client - allows you to view and control android device in realtime

Python Scrcpy Client This package allows you to view and control android device in realtime. Note: This gif is compressed and experience lower quality

InfraGenie is allows you to split out your infrastructure project into separate independent pieces, each with its own terraform state.
InfraGenie is allows you to split out your infrastructure project into separate independent pieces, each with its own terraform state.

🧞 InfraGenie InfraGenie is allows you to split out your infrastructure project into separate independent pieces, each with its own terraform state. T

A simple and lightweight server that allows clients to connect and launch a shell remotely through a browser.

carrotsh A simple and lightweight server that allows clients to connect and launch a shell remotely through a browser. Uses xterm.js for the frontend

A web-based app that allows easy, simple - and if desired high-throughput - analysis of qPCR data
A web-based app that allows easy, simple - and if desired high-throughput - analysis of qPCR data

qpcr-Analyser A web-based GUI for the qpcr package that allows easy, simple and high-throughput analysis of qPCR data. As is described in more detail

Owner
Open Traffic Generator
Open Traffic Generator
Pritunl is a distributed enterprise vpn server built using the OpenVPN protocol.

Pritunl is a distributed enterprise vpn server built using the OpenVPN protocol.

Pritunl 3.8k Jan 03, 2023
Simple DNS resolver for asyncio

Simple DNS resolver for asyncio aiodns provides a simple way for doing asynchronous DNS resolutions using pycares. Example import asyncio import aiodn

Saúl Ibarra Corretgé 471 Dec 27, 2022
Top server mcpe Indonesia!

server_mcpe Top server mcpe Indonesia! install pkg install python pkg install git git clone https://github.com/Latip176/server_mcpe cd server_mcpe pip

Muhammad Latif Harkat 2 Jul 17, 2022
A simple Tor switcher script switches tor nodes in interval of time

Tor_Switcher A simple Tor switcher script switches tor nodes in interval of time This script will switch tor nodes in every interval of time that you

d4rk sh4d0w 2 Nov 15, 2021
Query protocol and response

whois Query protocol and response _MᵃˢᵗᵉʳBᵘʳⁿᵗ_ _ ( ) _ ( )( ) _ | | ( ) | || |__ _ (_) ___ | | | | | || _ `\ /'_`\ | |/',__) |

MasterBurnt 4 Sep 05, 2021
Vent domain information retrieval tool, which is capable of retrieving customer information

Vent domain information retrieval tool, which is capable of retrieving customer information. This tool has been created for the purpose of complete education, Iam not responsible for any illegal acti

Md. Ridwanul Islam Muntakim 25 Dec 09, 2022
This is a top level socket library, making servers and clients EASY!

quick-net Sockets don't have to be a pain That's the motto this library was built with, and that's exactly what we made! This is a top-level socket li

Nate the great 15 Dec 17, 2021
ARTEMIS: Real-Time Detection and Automatic Mitigation for BGP Prefix Hijacking.

ARTEMIS: Real-Time Detection and Automatic Mitigation for BGP Prefix Hijacking. This is the main ARTEMIS repository that composes artemis-frontend, artemis-backend, artemis-monitor and other needed c

INSPIRE Group @FORTH-ICS 273 Jan 01, 2023
NanoChat - nano chat server and client

NanoChat This is a work in progress! NanoChat is an application for connecting with your friends using Python that uses ONLY default Python libraries.

Miss Bliss 1 Nov 13, 2021
Minimal, self-hosted, 0-config alternative to ngrok. Caddy+OpenSSH+50 lines of Python.

If you have a webserver running on one computer (say your development laptop), and you want to expose it securely (ie HTTPS) via a public URL, SirTunnel allows you to easily do that.

Anders Pitman 423 Jan 02, 2023
This is a small python code that I use with my NAS server connected to Plex

Spotifarr This is a small python code that I use with my NAS server connected to Plex I didn't appreciate how Lidarr works because it downloads a full

Automator 35 Oct 04, 2022
A p2p chat app for zephyr

A p2p chat app for zephyr

L3gacy B3ta 4 Jun 02, 2021
WARP+ uses Cloudflare’s virtual private backbone, known as Argo, to achieve higher speeds and ensure your connection is encrypted across the long haul of the Internet

WARP+ uses Cloudflare’s virtual private backbone, known as Argo, to achieve higher speeds and ensure your connection is encrypted across the long haul of the Internet

Rivane Rasetiansyah 3 Apr 01, 2022
pyngrok is a Python wrapper for ngrok

pyngrok is a Python wrapper for ngrok that manages its own binary, making ngrok available via a convenient Python API.

Alex Laird 329 Dec 31, 2022
批量检查目标是否为cdn

🐸 Frog For Automatic Scan 🐶 Doge For Defense Evasion&Offensive Security Frog-checkCDN 批量检查目标是否为cdn Usage: python3 checkCDN.py list.txt list内可以为ip或者d

TimWhite 119 Dec 27, 2022
A Python3 discord trojan, utilizing discord webhooks for sending information.

Vape-Lite-RAT A Python3 discord trojan, utilizing discord webhooks for sending information. What you do with this code / project / idea is non of my b

NightTab 12 Oct 15, 2022
Quickly fetch your WiFi password and if needed, generate a QR code of your WiFi to allow phones to easily connect

wifi-password Quickly fetch your WiFi password and if needed, generate a QR code of your WiFi to allow phones to easily connect. Works on macOS and Li

Siddharth Dushantha 2.6k Jan 05, 2023
DNS monitoring system built with Python.

DNS monitoring system built with Python.

Andressa Cabistani 7 Sep 28, 2021
A python 3 library which helps in using nmap port scanner.

A python 3 library which helps in using nmap port scanner. This is done by converting each nmap command into a callable python3 method or function. System administrators can now automatic nmap scans

Nmmapper 179 Dec 19, 2022
A simple Encrypted IM chat software Server & client based on Python3.

SecretBox A simple Encrypted IM chat software Server & client based on Python3. Version 1.0 命令行版 安装步骤 Server 运行pip3 install -r requirements 安装依赖。 运行py

h3h3da 5 Oct 31, 2022