Paaster is a secure by default end-to-end encrypted pastebin built with the objective of simplicity.

Overview

Follow the development of our desktop client here

Paaster

Paaster is a secure by default end-to-end encrypted pastebin built with the objective of simplicity.

Preview

Video of paaster in action! Mobile preview

Features

Looking to build a client for paaster?

Check out our Integration documentation

Security

What is E2EE?

E2EE or end to end encryption is a zero trust encryption methodology. When you paste code into paaster the code is encrypted locally with a secret generated on your browser. This secret is never shared with the server & only people you share the link with can view the paste.

Can I trust a instance of paaster not hosted by me?

No. Anyone could modify the functionality of paaster to expose your secret key to the server. We recommend using a instance you host or trust.

How are client secrets stored?

Client-sided secrets are stored in localStorage on paste creation (for paste history.) Anything else would be retrievable by the server or be overly complicated. This does make paaster vulnerable to malicious javascript being executed, but this would require malicious javascript to be present when the svelte application is built. If this was the case you'd have bigger issues, like the module just reading all inputs & getting the plain text paste.

How are client secrets transported?

Paaster uses URI fragments to transport secrets, according to the Mozilla foundation URI fragments aren't meant to be sent to the server. Bitwarden also has a article covering this usage here.

How are server secrets stored?

Server-sided secrets are stored in localStorage on paste creation, allowing you to modify or delete pastes later on. Server-sided secrets are generated on the server using the python secrets module & are stored in the database using bcrypt hashing.

Cipher

paaster is built using the forge module, using AES-256 in CBC mode with PKCS7 padding & PBKDF2 key derivation at 50,000 iterations. More details are located in our Integration documentation.

Shortcuts

  • Ctrl+V - Paste code.
  • Ctrl+S - Download code as file.
  • Ctrl+A - Copy all code to clipboard.
  • Ctrl+X - Copy URL to clipboard.

Requesting features

  • Open a new issue to request a feature (one issue per feature.)

What we won't add

  • Paste editing.
    • paaster isn't a text editor, it's a pastebin.
  • Paste button.
    • paaster isn't a text editor, when code is inputted it will always be automatically uploaded.
  • Optional encryption.
    • paaster will never have opt-in / opt-out encryption, encryption will always be present.

Setup

Production with Docker

  • git clone --branch Production https://github.com/WardPearce/paaster
  • Configure docker-compose.yml
  • Proxy exposed ports using Nginx (or whatever reverse proxy you prefer.)
  • FRONTEND_PROXIED should be the proxied address for "paaster_frontend". E.g. for paaster.io this is "https://paaster.io"
  • VITE_BACKEND should be the proxied address for "paaster_starlette". E.g. for paaster.io this is "https://api.paaster.io"
  • sudo docker-compose build; sudo docker-compose up -d

Using Rclone

Using rclone with Docker Compose

Basically the most important part is to install fuse, create /var/lib/docker-plugins/rclone/config & /var/lib/docker-plugins/rclone/cache, install the docker plugin docker plugin install rclone/docker-volume-rclone:amd64 args="-v" --alias rclone --grant-all-permissions, configure the rclone.conf for the storage service you want to use & then configure your docker compose to use the rclone volume. Example rclone docker compose.

Production without docker

This setup is not recommended & requires more research / knowledge.

  • git clone --branch Production https://github.com/WardPearce/paaster.
  • cd paaster-frontend
  • Create .env
    • VITE_NAME - The name displayed on the website.
    • VITE_BACKEND - The URL of the API.
  • Install nodejs
    • npm install
    • npm run build
  • Serve files generated in dist with Nginx (or whatever reverse proxy you use.)
  • cd paaster-backend
  • Install Python 3.7+
    • pip3 install -r requirements.txt
    • Configure main.py following the guide for uvicorn.
  • Pass environmental variables
    • REDIS_HOST
    • REDIS_PORT
    • MONGO_IP
    • MONGO_PORT
    • MONGO_DB
    • FRONTEND_PROXIED - The URL of the Frontend.
  • Proxy port with Nginx (or whatever reverse proxy you use.)

Development

  • git clone https://github.com/WardPearce/paaster.
  • cd paaster-frontend
  • Create .env
    • VITE_NAME - The name displayed on the website.
    • VITE_BACKEND - The URL of the API.
  • Install nodejs
    • npm install
    • npm run dev
  • cd paaster-backend
  • Pass environmental variables
    • REDIS_HOST
    • REDIS_PORT
    • MONGO_IP
    • MONGO_PORT
    • MONGO_DB
    • FRONTEND_PROXIED - The URL of the Frontend.
  • Install Python 3.7+
    • pip3 install -r requirements.txt
    • Run main.py
Owner
Ward
Privacy advocate & open source developer
Ward
Implementation of "With a Little Help from my Temporal Context: Multimodal Egocentric Action Recognition, BMVC, 2021" in PyTorch

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022
For the paper entitled ''A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining''

Summary This is the source code for the paper "A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining", which was accepted as fu

1 Nov 10, 2021
Python parser for DTED data.

DTED Parser This is a package written in pure python (with help from numpy) to parse and investigate Digital Terrain Elevation Data (DTED) files. This

Ben Bonenfant 12 Dec 18, 2022
Official implementation of the NeurIPS 2021 paper Online Learning Of Neural Computations From Sparse Temporal Feedback

Online Learning Of Neural Computations From Sparse Temporal Feedback This repository is the official implementation of the NeurIPS 2021 paper Online L

Lukas Braun 3 Dec 15, 2021
Machine learning for NeuroImaging in Python

nilearn Nilearn enables approachable and versatile analyses of brain volumes. It provides statistical and machine-learning tools, with instructive doc

919 Dec 25, 2022
TimeSHAP explains Recurrent Neural Network predictions.

TimeSHAP TimeSHAP is a model-agnostic, recurrent explainer that builds upon KernelSHAP and extends it to the sequential domain. TimeSHAP computes even

Feedzai 90 Dec 18, 2022
Jupyter notebooks for the code samples of the book "Deep Learning with Python"

Jupyter notebooks for the code samples of the book "Deep Learning with Python"

François Chollet 16.2k Dec 30, 2022
CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer

CSAW-M This repository contains code for CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer. Source code for tr

Yue Liu 7 Oct 11, 2022
Official page of Struct-MDC (RA-L'22 with IROS'22 option); Depth completion from Visual-SLAM using point & line features

Struct-MDC (click the above buttons for redirection!) Official page of "Struct-MDC: Mesh-Refined Unsupervised Depth Completion Leveraging Structural R

Urban Robotics Lab. @ KAIST 37 Dec 22, 2022
Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet

Reproduce ResNet-v2 using MXNet Requirements Install MXNet on a machine with CUDA GPU, and it's better also installed with cuDNN v5 Please fix the ran

Wei Wu 531 Dec 04, 2022
STEM: An approach to Multi-source Domain Adaptation with Guarantees

STEM: An approach to Multi-source Domain Adaptation with Guarantees Introduction This is the official implementation of ``STEM: An approach to Multi-s

5 Dec 19, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
VISNOTATE: An Opensource tool for Gaze-based Annotation of WSI Data

VISNOTATE: An Opensource tool for Gaze-based Annotation of WSI Data Introduction Requirements Installation and Setup Supported Hardware and Software R

SigmaLab 1 Jun 14, 2022
Erpnext app for make employee salary on payroll entry based on one or more project with percentage for all project equal 100 %

Project Payroll this app for make payroll for employee based on projects like project on 30 % and project 2 70 % as account dimension it makes genral

Ibrahim Morghim 8 Jan 02, 2023
Aligning Latent and Image Spaces to Connect the Unconnectable

About This repo contains the official implementation of the Aligning Latent and Image Spaces to Connect the Unconnectable paper. It is a GAN model whi

Ivan Skorokhodov 203 Jan 03, 2023
A library for building and serving multi-node distributed faiss indices.

About Distributed faiss index service. A lightweight library that lets you work with FAISS indexes which don't fit into a single server memory. It fol

Meta Research 170 Dec 30, 2022
Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle.

Paddle-Adversarial-Toolbox Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle. Model Zoo Common FGS

AgentMaker 17 Nov 08, 2022
[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

Xiefan Guo 122 Dec 11, 2022
All of the figures and notebooks for my deep learning book, for free!

"Deep Learning - A Visual Approach" by Andrew Glassner This is the official repo for my book from No Starch Press. Ordering the book My book is called

Andrew Glassner 227 Jan 04, 2023
A public available dataset for road boundary detection in aerial images

Topo-boundary This is the official github repo of paper Topo-boundary: A Benchmark Dataset on Topological Road-boundary Detection Using Aerial Images

Zhenhua Xu 79 Jan 04, 2023