A Machine Teaching Framework for Scalable Recognition

Overview

MEMORABLE

This repository contains the source code accompanying our ICCV 2021 paper.

A Machine Teaching Framework for Scalable Recognition
Pei Wang, Nuno Vasconcelos.
In ICCV, 2021.

@InProceedings{wang2021gradient,
author = {Wang, Pei and Vasconcelos, Nuno},
title = {A Machine Teaching Framework for Scalable Recognition},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2021}
}

Requirements

  1. The project was implemented and tested in Python 3.5 and Pytorch 1.0. Other versions should work after minor modification.
  2. NVIDIA GPU and cuDNN are required to have fast speeds. For now, CUDA 8.0 with cuDNN 6.0.20 has been tested. The other versions should be working.

Datasets

Butterflies and Chinese Characters, Gull are used. Please organize them as below after download,

datasets
|_ butterflies_crop
  |_ images
    |_ Viceroy
    |_ ...
|_ chinese_chars
  |_ images
    |_ grass
    |_ ...
|_ CUBgull
  |_ images
    |_ CaliforniaGull
    |_ ...

Implementation details

To generate counterfactual explanations

get_all_CE_butterflies.py
get_all_CE_gull.py

by SimCLR model

get_all_CE_butterflies_simclr.py
get_all_CE_gull_simclr.py

To generate teaching images and explanations

train_butterflies_CMaxGrad.py
train_gull_CMaxGrad.py

by SimCLR model

train_butterflies_CMaxGrad_simclr.py
train_gull_CMaxGrad_simclr.py

For the SimCLR, we used repo for training. Thanks for their open-source. For standard model, we trained by

train_butterflies_resnet18.py
train_gull_resnet18_linear.py

For questions, feel free to reach out

Pei Wang: [email protected]
Xintao 1.4k Dec 25, 2022
Deep High-Resolution Representation Learning for Human Pose Estimation

Deep High-Resolution Representation Learning for Human Pose Estimation (accepted to CVPR2019) News If you are interested in internship or research pos

HRNet 167 Dec 27, 2022
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

472 Dec 22, 2022
Tensorboard for pytorch (and chainer, mxnet, numpy, ...)

tensorboardX Write TensorBoard events with simple function call. The current release (v2.3) is tested on anaconda3, with PyTorch 1.8.1 / torchvision 0

Tzu-Wei Huang 7.5k Dec 28, 2022
Versatile Generative Language Model

Versatile Generative Language Model This is the implementation of the paper: Exploring Versatile Generative Language Model Via Parameter-Efficient Tra

Zhaojiang Lin 17 Dec 02, 2022
PointCNN: Convolution On X-Transformed Points (NeurIPS 2018)

PointCNN: Convolution On X-Transformed Points Created by Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Introduction PointCNN

Yangyan Li 1.3k Dec 21, 2022
Data reduction pipeline for KOALA on the AAT.

KOALA KOALA, the Kilofibre Optical AAT Lenslet Array, is a wide-field, high efficiency, integral field unit used by the AAOmega spectrograph on the 3.

4 Sep 26, 2022
Anomaly detection analysis and labeling tool, specifically for multiple time series (one time series per category)

taganomaly Anomaly detection labeling tool, specifically for multiple time series (one time series per category). Taganomaly is a tool for creating la

Microsoft 272 Dec 17, 2022
We are More than Our JOints: Predicting How 3D Bodies Move

We are More than Our JOints: Predicting How 3D Bodies Move Citation This repo contains the official implementation of our paper MOJO: @inproceedings{Z

72 Oct 20, 2022
This repository contains a PyTorch implementation of "AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis".

AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis | Project Page | Paper | PyTorch implementation for the paper "AD-NeRF: Audio

551 Dec 29, 2022
This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems.

Amortized Assimilation This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems. Abstract: T

4 Aug 16, 2022
2021 credit card consuming recommendation

2021 credit card consuming recommendation

Wang, Chung-Che 7 Mar 08, 2022
Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

IC-Conv This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search. Getting Started Download Imag

Jie Liu 111 Dec 31, 2022
CONditionals for Ordinal Regression and classification in PyTorch

CONDOR pytorch implementation for ordinal regression with deep neural networks. Documentation: https://GarrettJenkinson.github.io/condor_pytorch About

7 Jul 25, 2022
Random Forests for Regression with Missing Entries

Random Forests for Regression with Missing Entries These are specific codes used in the article: On the Consistency of a Random Forest Algorithm in th

Irving Gómez-Méndez 1 Nov 15, 2021
Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Max 1 Dec 29, 2021
A Closer Look at Invalid Action Masking in Policy Gradient Algorithms

A Closer Look at Invalid Action Masking in Policy Gradient Algorithms This repo contains the source code to reproduce the results in the paper A Close

Costa Huang 73 Dec 24, 2022
STBP is a way to train SNN with datasets by Backward propagation.

Spiking neural network (SNN), compared with depth neural network (DNN), has faster processing speed, lower energy consumption and more biological interpretability, which is expected to approach Stron

Ling Zhang 18 Dec 09, 2022
Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance

Nested Graph Neural Networks About Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance.

Muhan Zhang 38 Jan 05, 2023
Must-read Papers on Physics-Informed Neural Networks.

PINNpapers Contributed by IDRL lab. Introduction Physics-Informed Neural Network (PINN) has achieved great success in scientific computing since 2017.

IDRL 330 Jan 07, 2023