Bolt Online Learning Toolbox

Related tags

Deep Learningbolt
Overview

Bolt Online Learning Toolbox

Bolt features discriminative learning of linear predictors (e.g. SVM or Logistic Regression) using fast online learning algorithms. Bolt is aimed at large-scale, high-dimensional and sparse machine-learning problems. In particular, problems encountered in information retrieval and natural language processing.

Bolt features:

  • Fast learning based on stochastic gradient descent (plain and via projected (sub-)gradients).
  • Different loss functions for classification (hinge, log, modified huber) and regression (OLS, huber).
  • Different penalties (L2, L1, and elastic-net).
  • Simple, yet powerful commandline interface similar to SVM^light.
  • Python bindings, feature vectors encoded as Numpy arrays.

Furthermore, Bolt provides support for generalized linear models for multi-class classification. Currently, it supports the following multi-class learning algorithms:

  • One-versus-All strategy for binary classifiers.
  • Multinomial Logistic Regression (aka MaxEnt) via SGD.
  • Averaged Perceptron [Freund, Y. and Schapire, R. E., 1998].

The toolkit is written in Python [1], the critical sections are C-extensions written in Cython [2]. It makes heavy use of Numpy [3], a numeric computing library for Python.

Requirements

To install Bolt you need:

  • Python 2.5 or 2.6
  • C-compiler (tested with gcc 4.3.3)
  • Numpy (>= 1.1)

If you want to modify *.pyx files you also need cython (>=0.11.2).

Installation

To clone the repository run,

git clone git://github.com/pprett/bolt.git

To build bolt simply run,

python setup.py build

To install bolt on your system, use

python setup.py install

Documentation

For detailed documentation see http://pprett.github.com/bolt/.

References

[1] http://www.python.org

[2] http://www.cython.org

[3] http://numpy.scipy.org

[Freund, Y. and Schapire, R. E., 1998] Large margin classification using the perceptron algorithm. In Machine Learning, 37, 277-296.

[Shwartz, S. S., Singer, Y., and Srebro, N., 2007] Pegasos: Primal estimated sub-gradient solver for svm. In Proceedings of ICML '07.

[Tsuruoka, Y., Tsujii, J., and Ananiadou, S., 2009] Stochastic gradient descent training for l1-regularized log-linear models with cumulative penalty. In Proceedings of the AFNLP/ACL '09.

[Zhang, T., 2004] Solving large scale linear prediction problems using stochastic gradient descent algorithms. In Proceedings of ICML '04.

[Zou, H., and Hastie, T., 2005] Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B, 67 (2), 301-320.

[BMVC'21] Official PyTorch Implementation of Grounded Situation Recognition with Transformers

Grounded Situation Recognition with Transformers Paper | Model Checkpoint This is the official PyTorch implementation of Grounded Situation Recognitio

Junhyeong Cho 18 Jul 19, 2022
Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models"

Introduction Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models". In this work, we demonstrate that existi

Wei-Cheng Tseng 7 Nov 01, 2022
Codes accompanying the paper "Believe What You See: Implicit Constraint Approach for Offline Multi-Agent Reinforcement Learning" (NeurIPS 2021 Spotlight

Implicit Constraint Q-Learning This is a pytorch implementation of ICQ on Datasets for Deep Data-Driven Reinforcement Learning (D4RL) and ICQ-MA on SM

42 Dec 23, 2022
A Blender python script for getting asset browser custom preview images for objects and collections.

asset_snapshot A Blender python script for getting asset browser custom preview images for objects and collections. Installation: Click the code butto

Johnny Matthews 44 Nov 29, 2022
MarcoPolo is a clustering-free approach to the exploration of bimodally expressed genes along with group information in single-cell RNA-seq data

MarcoPolo is a method to discover differentially expressed genes in single-cell RNA-seq data without depending on prior clustering Overview MarcoPolo

Chanwoo Kim 13 Dec 18, 2022
This repository contains all data used for writing a research paper Multiple Object Trackers in OpenCV: A Benchmark, presented in ISIE 2021 conference in Kyoto, Japan.

OpenCV-Multiple-Object-Tracking Python is version 3.6.7 to install opencv: pip uninstall opecv-python pip uninstall opencv-contrib-python pip install

6 Dec 19, 2021
Official repository of the AAAI'2022 paper "Contrast and Generation Make BART a Good Dialogue Emotion Recognizer"

CoG-BART Contrast and Generation Make BART a Good Dialogue Emotion Recognizer Quick Start: To run the model on test sets of four datasets, Download th

39 Dec 24, 2022
Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".

nvdiffrec Joint optimization of topology, materials and lighting from multi-view image observations as described in the paper Extracting Triangular 3D

NVIDIA Research Projects 1.4k Jan 01, 2023
Few-shot Learning of GPT-3

Few-shot Learning With Language Models This is a codebase to perform few-shot "in-context" learning using language models similar to the GPT-3 paper.

Tony Z. Zhao 224 Dec 28, 2022
Speed-Test - You can check your intenet speed using this tool

Speed-Test Tool By Hez_X AVAILABLE ON : Termux & Kali linux & Ubuntu (Linux E

Hez-X 3 Feb 17, 2022
This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch

This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch. The code was prepared to the final version of the accepted manuscript in AIST

Marcelo Hartmann 2 May 06, 2022
An exploration of log domain "alternative floating point" for hardware ML/AI accelerators.

This repository contains the SystemVerilog RTL, C++, HLS (Intel FPGA OpenCL to wrap RTL code) and Python needed to reproduce the numerical results in

Facebook Research 373 Dec 31, 2022
Drone Task1 - Drone Task1 With Python

Drone_Task1 Matching Results 3.mp4 1.mp4

MLV Lab (Machine Learning and Vision Lab at Korea University) 11 Nov 14, 2022
Source code for our EMNLP'21 paper 《Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning》

Child-Tuning Source code for EMNLP 2021 Long paper: Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning. 1. Environ

46 Dec 12, 2022
KoCLIP: Korean port of OpenAI CLIP, in Flax

KoCLIP This repository contains code for KoCLIP, a Korean port of OpenAI's CLIP. This project was conducted as part of Hugging Face's Flax/JAX communi

Jake Tae 100 Jan 02, 2023
Simple sinc interpolation in PyTorch.

Kazane: simple sinc interpolation for 1D signal in PyTorch Kazane utilize FFT based convolution to provide fast sinc interpolation for 1D signal when

Chin-Yun Yu 10 May 03, 2022
This repository is for Competition for ML_data class

This repository is for Competition for ML_data class. Based on mmsegmentatoin,mainly using swin transformer to completed the competition.

jianlong 2 Oct 23, 2022
tf2-keras implement yolov5

YOLOv5 in tesnorflow2.x-keras yolov5数据增强jupyter示例 Bilibili视频讲解地址: 《yolov5 解读,训练,复现》 Bilibili视频讲解PPT文件: yolov5_bilibili_talk_ppt.pdf Bilibili视频讲解PPT文件:

yangcheng 254 Jan 08, 2023
Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Context Terms

LESA Introduction This repository contains the official implementation of Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Cont

Chenglin Yang 20 Dec 31, 2021
Iowa Project - My second project done at General Assembly, focused on feature engineering and understanding Linear Regression as a concept

Project 2 - Ames Housing Data and Kaggle Challenge PROBLEM STATEMENT Inferring or Predicting? What's more valuable for a housing model? When creating

Adam Muhammad Klesc 1 Jan 03, 2022