Code for "Long Range Probabilistic Forecasting in Time-Series using High Order Statistics"

Overview

Long Range Probabilistic Forecasting in Time-Series using High Order Statistics

This is the code produced as part of the paper Long Range Probabilistic Forecasting in Time-Series using High Order Statistics

Long Range Probabilistic Forecasting in Time-Series using High Order Statistics.

Prathamesh Deshpande and Sunita Sarawagi. arXiv:2111.03394v1.

How to work with Command Line Arguments?

  • If an optional argument is not passed, it's value will be extracted from configuration specified in the file main.py (based on dataset_name, model_name).
  • If a valid argument value is passed through command line arguments, the code will use it further. That is, it will ignore the value assigned in the configuration.

Command Line Arguments Information

Argument name Type Valid Assignments Default
dataset_name str azure, ett, etthourly, Solar, taxi30min, Traffic911 positional argument
saved_models_dir str - None
output_dir str - None
N_input int >0 -1
N_output int >0 -1
epochs int >0 -1
normalize str same, zscore_per_series, gaussian_copula, log None
learning_rate float >0 -1.0
hidden_size int >0 -1
num_grulstm_layers int >0 -1
batch_size int >0 -1
v_dim int >0 -1
t2v_type str local, idx, mdh_lincomb, mdh_parti None
K_list [int,...,int ] [>0,...,>0 ] []
device str - None

Datasets

All the datasets can be found here.

Add the dataset files/directories in data directory before running the code.

Output files

Targets and Forecasts

Following output files are stored in the <output_dir>/<dataset_name>/ directory.

File name Description
inputs.npy Test input values, size: number of time-series x N_input
targets.npy Test target/ground-truth values, size: number of time-series x N_output
<model_name>_pred_mu.npy Mean forecast values. The size of the matrix is number of time-series x number of time-steps
<model_name>_pred_std.npy Standard-deviation of forecast values. The size of the matrix is number of time-series x number of time-steps

Metrics

All the evaluation metrics on test data are stored in <output_dir>/results_<dataset_name>.json in the following format:

{
  <model_name1>: 
    {
      'crps':<crps>,
      'mae':<mae>,
      'mse':<mse>,
      'smape':<smape>,
      'dtw':<dtw>,
      'tdi':<tdi>,
    }
  <model_name2>: 
    {
      'crps':<crps>,
      'mae':<mae>,
      'mse':<mse>,
      'smape':<smape>,
      'dtw':<dtw>,
      'tdi':<tdi>,
    }
    .
    .
    .
}

Here <model_name1>, <model_name2>, ... are different models under consideration.

Global-Local Attention for Emotion Recognition

Global-Local Attention for Emotion Recognition Requirements Python 3 Install tensorflow (or tensorflow-gpu) = 2.0.0 Install some other packages pip i

Minh Nhat Le 15 Apr 21, 2022
Face recognize system

FRS Face_recognize_system This project contains my work that target on solving some problems of FRS: Face detection: Retinaface Face anti-spoofing: Fo

Tran Anh Tuan 4 Nov 18, 2021
PyTorch implementation of probabilistic deep forecast applied to air quality.

Probabilistic Deep Forecast PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting

Abdulmajid Murad 13 Nov 16, 2022
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

Hanxun Huang 11 Nov 30, 2022
Instance Semantic Segmentation List

Instance Semantic Segmentation List This repository contains lists of state-or-art instance semantic segmentation works. Papers and resources are list

bighead 87 Mar 06, 2022
Code for "Causal autoregressive flows" - AISTATS, 2021

Code for "Causal Autoregressive Flow" This repository contains code to run and reproduce experiments presented in Causal Autoregressive Flows, present

Ricardo Pio Monti 35 Dec 16, 2022
Face recognize and crop them

Face Recognize Cropping Module Source 아이디어 Face Alignment with OpenCV and Python Requirement 필요 라이브러리 imutil dlib python-opence (cv2) Usage 사용 방법 open

Cho Moon Gi 1 Feb 15, 2022
ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation

ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation This repository provides a PyTorch implementation of ADSPM. Requirements Pyth

24 Jul 24, 2022
Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechanism for Generalized Face Presentation Attack Detection

LMFD-PAD Note This is the official repository of the paper: LMFD-PAD: Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechani

28 Dec 02, 2022
Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV)

BayesOpt-LV Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV) About This repository contains the s

1 Nov 11, 2021
Official DGL implementation of "Rethinking High-order Graph Convolutional Networks"

SE Aggregation This is the implementation for Rethinking High-order Graph Convolutional Networks. Here we show the codes for citation networks as an e

Tianqi Zhang (张天启) 32 Jul 19, 2022
ECCV18 Workshops - Enhanced SRGAN. Champion PIRM Challenge on Perceptual Super-Resolution. The training codes are in BasicSR.

ESRGAN (Enhanced SRGAN) [ 🚀 BasicSR] [Real-ESRGAN] ✨ New Updates. We have extended ESRGAN to Real-ESRGAN, which is a more practical algorithm for rea

Xintao 4.7k Jan 02, 2023
Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Accompanying code for the paper Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Kevin Wilkinghoff 6 Dec 01, 2022
Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression

Regression Transformer Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression . Development se

International Business Machines 27 Jan 05, 2023
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
Self-Supervised Deep Blind Video Super-Resolution

Self-Blind-VSR Paper | Discussion Self-Supervised Deep Blind Video Super-Resolution By Haoran Bai and Jinshan Pan Abstract Existing deep learning-base

Haoran Bai 35 Dec 09, 2022
Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Philipp Erler 329 Jan 06, 2023
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Introduction 1. Usage (For MSS) 1.1 Prepare running environment 1.2 Use pretrained model 1.3 Train new MSS models from scratch 1.3.1 How to train 1.3.

Leo 100 Dec 25, 2022
Re-TACRED: Addressing Shortcomings of the TACRED Dataset

Re-TACRED Re-TACRED: Addressing Shortcomings of the TACRED Dataset

George Stoica 40 Dec 10, 2022