Code for "Long Range Probabilistic Forecasting in Time-Series using High Order Statistics"

Overview

Long Range Probabilistic Forecasting in Time-Series using High Order Statistics

This is the code produced as part of the paper Long Range Probabilistic Forecasting in Time-Series using High Order Statistics

Long Range Probabilistic Forecasting in Time-Series using High Order Statistics.

Prathamesh Deshpande and Sunita Sarawagi. arXiv:2111.03394v1.

How to work with Command Line Arguments?

  • If an optional argument is not passed, it's value will be extracted from configuration specified in the file main.py (based on dataset_name, model_name).
  • If a valid argument value is passed through command line arguments, the code will use it further. That is, it will ignore the value assigned in the configuration.

Command Line Arguments Information

Argument name Type Valid Assignments Default
dataset_name str azure, ett, etthourly, Solar, taxi30min, Traffic911 positional argument
saved_models_dir str - None
output_dir str - None
N_input int >0 -1
N_output int >0 -1
epochs int >0 -1
normalize str same, zscore_per_series, gaussian_copula, log None
learning_rate float >0 -1.0
hidden_size int >0 -1
num_grulstm_layers int >0 -1
batch_size int >0 -1
v_dim int >0 -1
t2v_type str local, idx, mdh_lincomb, mdh_parti None
K_list [int,...,int ] [>0,...,>0 ] []
device str - None

Datasets

All the datasets can be found here.

Add the dataset files/directories in data directory before running the code.

Output files

Targets and Forecasts

Following output files are stored in the <output_dir>/<dataset_name>/ directory.

File name Description
inputs.npy Test input values, size: number of time-series x N_input
targets.npy Test target/ground-truth values, size: number of time-series x N_output
<model_name>_pred_mu.npy Mean forecast values. The size of the matrix is number of time-series x number of time-steps
<model_name>_pred_std.npy Standard-deviation of forecast values. The size of the matrix is number of time-series x number of time-steps

Metrics

All the evaluation metrics on test data are stored in <output_dir>/results_<dataset_name>.json in the following format:

{
  <model_name1>: 
    {
      'crps':<crps>,
      'mae':<mae>,
      'mse':<mse>,
      'smape':<smape>,
      'dtw':<dtw>,
      'tdi':<tdi>,
    }
  <model_name2>: 
    {
      'crps':<crps>,
      'mae':<mae>,
      'mse':<mse>,
      'smape':<smape>,
      'dtw':<dtw>,
      'tdi':<tdi>,
    }
    .
    .
    .
}

Here <model_name1>, <model_name2>, ... are different models under consideration.

Program your own vulkan.gpuinfo.org query in Python. Used to determine baseline hardware for WebGPU.

query-gpuinfo-data License This software is not presently released under a license. The data in data/ is obtained under CC BY 4.0 as specified there.

Kai Ninomiya 5 Jul 18, 2022
A crash course in six episodes for software developers who want to become machine learning practitioners.

Featured code sample tensorflow-planespotting Code from the Google Cloud NEXT 2018 session "Tensorflow, deep learning and modern convnets, without a P

Google Cloud Platform 2.6k Jan 08, 2023
ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation

ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation This repository contains the source code of our paper, ESPNet (acc

Sachin Mehta 515 Dec 13, 2022
EMNLP 2020 - Summarizing Text on Any Aspects

Summarizing Text on Any Aspects This repo contains preliminary code of the following paper: Summarizing Text on Any Aspects: A Knowledge-Informed Weak

Bowen Tan 35 Nov 14, 2022
A baseline code for VSPW

A baseline code for VSPW Preparation Download VSPW dataset The VSPW dataset with extracted frames and masks is available here.

28 Aug 22, 2022
Public repo for the ICCV2021-CVAMD paper "Is it Time to Replace CNNs with Transformers for Medical Images?"

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning This is the code for implementing the MADDPG algorithm presented in

97 Dec 21, 2022
The implementation of ICASSP 2020 paper "Pixel-level self-paced learning for super-resolution"

Pixel-level Self-Paced Learning for Super-Resolution This is an official implementaion of the paper Pixel-level Self-Paced Learning for Super-Resoluti

Elon Lin 41 Dec 15, 2022
Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline

vqvae_dwt_distiller.pytorch Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline. It allows to generate 512x512 ima

Sergei Belousov 25 Jul 19, 2022
Pytorch implementation of MixNMatch

MixNMatch: Multifactor Disentanglement and Encoding for Conditional Image Generation [Paper] Yuheng Li, Krishna Kumar Singh, Utkarsh Ojha, Yong Jae Le

910 Dec 30, 2022
Implementation of the paper "Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning"

Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning This is the implementation of the paper "Self-Promoted Prototype Refinement

Kai Zhu 78 Dec 02, 2022
Model-based 3D Hand Reconstruction via Self-Supervised Learning, CVPR2021

S2HAND: Model-based 3D Hand Reconstruction via Self-Supervised Learning S2HAND presents a self-supervised 3D hand reconstruction network that can join

Yujin Chen 72 Dec 12, 2022
Python package for dynamic system estimation of time series

PyDSE Toolset for Dynamic System Estimation for time series inspired by DSE. It is in a beta state and only includes ARMA models right now. Documentat

Blue Yonder GmbH 40 Oct 07, 2022
PyTorch Implementation of NCSOFT's FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis

FastPitchFormant - PyTorch Implementation PyTorch Implementation of FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis. Qu

Keon Lee 63 Jan 02, 2023
Using Python to Play Cyberpunk 2077

CyberPython 2077 Using Python to Play Cyberpunk 2077 This repo will contain code from the Cyberpython 2077 video series on Youtube (youtube.

Harrison 118 Oct 18, 2022
InvTorch: memory-efficient models with invertible functions

InvTorch: Memory-Efficient Invertible Functions This module extends the functionality of torch.utils.checkpoint.checkpoint to work with invertible fun

Modar M. Alfadly 12 May 12, 2022
Official release of MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis of Pancreatic Cancer axriv: http://arxiv.org/abs/2112.13513

MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis This is the official page of the MSHT with its experimental script and records. We de

Tianyi Zhang 53 Dec 27, 2022
Pcos-prediction - Predicts the likelihood of Polycystic Ovary Syndrome based on patient attributes and symptoms

PCOS Prediction 🥼 Predicts the likelihood of Polycystic Ovary Syndrome based on

Samantha Van Seters 1 Jan 10, 2022
DeLiGAN - This project is an implementation of the Generative Adversarial Network

This project is an implementation of the Generative Adversarial Network proposed in our CVPR 2017 paper - DeLiGAN : Generative Adversarial Net

Video Analytics Lab -- IISc 110 Sep 13, 2022
Nb workflows - A workflow platform which allows you to run parameterized notebooks programmatically

NB Workflows Description If SQL is a lingua franca for querying data, Jupyter sh

Xavier Petit 6 Aug 18, 2022