Precision Medicine Knowledge Graph (PrimeKG)

Overview

PrimeKG


website GitHub Repo stars GitHub Repo forks License: MIT

Website | bioRxiv Paper | Harvard Dataverse

Precision Medicine Knowledge Graph (PrimeKG) presents a holistic view of diseases. PrimeKG integrates 20 high-quality biomedical resources to describe 17,080 diseases with 4,050,249 relationships representing ten major biological scales, considerably expanding previous efforts in disease-rooted knowledge graphs. We accompany PrimeKG’s graph structure with text descriptions of clinical guidelines for drugs and diseases to enable multimodal analyses.

Updates

Unique Features of PrimeKG

  • Diverse coverage of diseases: PrimeKG contains over 17,000 diseases including rare dieases. Disease nodes in PrimeKG are densely connected to other nodes in the graph and have been optimized for clinical relevance in downstream precision medicine tasks.
  • Heterogeneous knowledge graph: PrimeKG contains over 100,000 nodes distributed over various biological scales as depicted below. PrimeKG also contains over 4 million relationships between these nodes distributed over 29 types of edges.
  • Multimodal integration of clinical knowledge: Disease and drug nodes in PrimeKG are augmented with clinical descriptors that come from medical authorities such as Mayo Clinic, Orphanet, Drug Bank, and so forth.
  • Ready-to-use datasets: PrimeKG is minimally dependent on external packages. Our knowledge graph can be retrieved in a ready-to-use format from Harvard Dataverse.
  • Data functions: PrimeKG provides extensive data functions, including processors for primary resources and scripts to build an updated knowledge graph.

overview

PrimeKG-example

Environment setup

Using pip

To install the dependencies required to run the PrimeKG code, use pip:

pip install -r requirements.txt

Or use conda

conda env create --name PrimeKG --file=environments.yml

Building an updated PrimeKG

Downloading primary data resources

All persistent identifiers and weblinks to download the 20 primary data resources used to build PrimeKG are systematically provided in the Data Records section of our article. We have also mentioned the exact filenames that were downloaded from each resource for easy corroboration.

Curating primary data resources

We provide the scripts used to process all primary data resources and the names of the resulting output files generated by those scripts. We would be happy to share the intermediate processing datasets that were used to create PrimeKG on request.

Database Processing scripts Expected script output
Bgee bgee.py anatomy_gene.csv
Comparative Toxicogenomics Database ctd.py exposure_data.csv
DisGeNET - curated_gene_disease_associations.tsv
DrugBank drugbank_drug_drug.py drug_drug.csv
DrugBank parsexml_drugbank.ipynb, Parsed_feature.ipynb 12 drug feature files
DrugBank drugbank_drug_protein.py drug_protein.csv
Drug Central drugcentral_queries.txt drug_disease.csv
Drug Central drugcentral_feature.Rmd dc_features.csv
Entrez Gene ncbigene.py protein_go_associations.csv
Gene Ontology go.py go_terms_info.csv, go_terms_relations.csv
Human Phenotype Ontology hpo.py, hpo_obo_parser.py hp_terms.csv, hp_parents.csv, hp_references.csv
Human Phenotype Ontology hpoa.py disease_phenotype_pos.csv, disease_phenotype_neg.csv
MONDO mondo.py, mondo_obo_parser.py mondo_terms.csv, mondo_parents.csv, mondo_references.csv, mondo_subsets.csv, mondo_definitions.csv
Reactome reactome.py reactome_ncbi.csv, reactome_terms.csv, reactome_relations.csv
SIDER sider.py sider.csv
UBERON uberon.py uberon_terms.csv, uberon_rels.csv, uberon_is_a.csv
UMLS umls.py, map_umls_mondo.py umls_mondo.csv
UMLS umls.ipynb umls_def_disorder_2021.csv, umls_def_disease_2021.csv

Harmonizing datasets into PrimeKG

The code to harmonize datasets and construct PrimeKG is available at build_graph.ipynb. Simply run this jupyter notebook in order to construct the knowledge graph form the outputs of the processing files mentioned above. This jupyter notebook produces all three versions of PrimeKG, kg_raw.csv, kg_giant.csv, and the complete version kg.csv.

Feature extraction

The code required to engineer features can be found at engineer_features.ipynb and mapping_mayo.ipynb.

Cite Us

If you find PrimeKG useful, cite our work:

@article{chandak2022building,
  title={Building a knowledge graph to enable precision medicine},
  author={Chandak, Payal and Huang, Kexin and Zitnik, Marinka},
  journal={bioRxiv},
  doi={10.1101/2022.05.01.489928},
  URL={https://www.biorxiv.org/content/early/2022/05/01/2022.05.01.489928},
  year={2022}
}

Data Server

PrimeKG is hosted on Harvard Dataverse with the following persistent identifier https://doi.org/10.7910/DVN/IXA7BM. When Dataverse is under maintenance, PrimeKG datasets cannot be retrieved. That happens rarely; please check the status on the Dataverse website.

License

PrimeKG codebase is under MIT license. For individual dataset usage, please refer to the dataset license found in the website.

Owner
Machine Learning for Medicine and Science @ Harvard
Machine Learning for Medicine and Science @ Harvard
Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.

textgenrnn Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code, or quickly tr

Max Woolf 4.8k Dec 30, 2022
Need: Image Search With Python

Need: Image Search The problem is that a user needs to search for a specific ima

Surya Komandooru 1 Dec 30, 2021
We have built a Voice based Personal Assistant for people to access files hands free in their device using natural language processing.

Voice Based Personal Assistant We have built a Voice based Personal Assistant for people to access files hands free in their device using natural lang

Rushabh 2 Nov 13, 2021
A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You can find two approaches for achieving this in this repo.

multitask-learning-transformers A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You

Shahrukh Khan 48 Jan 02, 2023
A collection of GNN-based fake news detection models.

This repo includes the Pytorch-Geometric implementation of a series of Graph Neural Network (GNN) based fake news detection models. All GNN models are implemented and evaluated under the User Prefere

SafeGraph 251 Jan 01, 2023
Mkdocs + material + cool stuff

Modern-Python-Doc-Example mkdocs + material + cool stuff Doc is live here Features out of the box amazing good looking website thanks to mkdocs.org an

Francesco Saverio Zuppichini 61 Oct 26, 2022
Precision Medicine Knowledge Graph (PrimeKG)

PrimeKG Website | bioRxiv Paper | Harvard Dataverse Precision Medicine Knowledge Graph (PrimeKG) presents a holistic view of diseases. PrimeKG integra

Machine Learning for Medicine and Science @ Harvard 103 Dec 10, 2022
A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework.

Unpacker Karton Service A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework. This project is

c3rb3ru5 45 Jan 05, 2023
Artificial Conversational Entity for queries in Eulogio "Amang" Rodriguez Institute of Science and Technology (EARIST)

🤖 Coeus - EARIST A.C.E 💬 Coeus is an Artificial Conversational Entity for queries in Eulogio "Amang" Rodriguez Institute of Science and Technology,

Dids Irwyn Reyes 3 Oct 14, 2022
🤗🖼️ HuggingPics: Fine-tune Vision Transformers for anything using images found on the web.

🤗 🖼️ HuggingPics Fine-tune Vision Transformers for anything using images found on the web. Check out the video below for a walkthrough of this proje

Nathan Raw 185 Dec 21, 2022
CLIPfa: Connecting Farsi Text and Images

CLIPfa: Connecting Farsi Text and Images OpenAI released the paper Learning Transferable Visual Models From Natural Language Supervision in which they

Sajjad Ayoubi 66 Dec 14, 2022
OCR을 이용하여 인원수를 인식 후 줌을 Kill 해줍니다

How To Use killtheZoom-2.0 Windows 0. https://joyhong.tistory.com/79 이 글을 보면서 tesseract를 C:\Program Files\Tesseract-OCR 경로로 설치해주세요(한국어 언어 추가 필요) 상단의 초

김정인 9 Sep 13, 2021
Using Bert as the backbone model for lime, designed for NLP task explanation (sentence pair text classification task)

Lime Comparing deep contextualized model for sentences highlighting task. In addition, take the classic explanation model "LIME" with bert-base model

JHJu 2 Jan 18, 2022
ByT5: Towards a token-free future with pre-trained byte-to-byte models

ByT5: Towards a token-free future with pre-trained byte-to-byte models ByT5 is a tokenizer-free extension of the mT5 model. Instead of using a subword

Google Research 409 Jan 06, 2023
Input english text, then translate it between languages n times using the Deep Translator Python Library.

mass-translator About Input english text, then translate it between languages n times using the Deep Translator Python Library. How to Use Install dep

2 Mar 04, 2022
Implementation of "Adversarial purification with Score-based generative models", ICML 2021

Adversarial Purification with Score-based Generative Models by Jongmin Yoon, Sung Ju Hwang, Juho Lee This repository includes the official PyTorch imp

15 Dec 15, 2022
Maix Speech AI lib, including ASR, chat, TTS etc.

Maix-Speech 中文 | English Brief Now only support Chinese, See 中文 Build Clone code by: git clone https://github.com/sipeed/Maix-Speech Compile x86x64 c

Sipeed 267 Dec 25, 2022
The training code for the 4th place model at MDX 2021 leaderboard A.

The training code for the 4th place model at MDX 2021 leaderboard A.

Chin-Yun Yu 32 Dec 18, 2022
Smart discord chatbot integrated with Dialogflow to manage different classrooms and assist in teaching!

smart-school-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
Deep Learning for Natural Language Processing - Lectures 2021

This repository contains slides for the course "20-00-0947: Deep Learning for Natural Language Processing" (Technical University of Darmstadt, Summer term 2021).

0 Feb 21, 2022