EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

Related tags

Deep LearningMADE
Overview

MADE (Multi-Adapter Dataset Experts)

This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the paper Single-dataset Experts for Multi-dataset Question Answering.

MADE combines a shared Transformer with a collection of adapters that are specialized to different reading comprehension datasets. See our paper for details.

Quick links

Requirements

The code uses Python 3.8, PyTorch, and the adapter-transformers library. Install the requirements with:

pip install -r requirements.txt

Download the data

You can download the datasets used in the paper from the repository for the MRQA 2019 shared task.

The datasets should be stored in directories ending with train or dev. For example, download the in-domain training datasets to a directory called data/train/ and download the in-domain development datasets to data/dev/.

For zero-shot and few-shot experiments, download the MRQA out-of-domain development datasets to a separate directory and split them into training and development splits using scripts/split_datasets.py. For example, download the datasets to data/transfer/ and run

ls data/transfer/* -1 | xargs -l python scripts/split_datasets.py

Use the default random seed (13) to replicate the splits used in the paper.

Download the trained models

The trained models are stored on the HuggingFace model hub at this URL: https://huggingface.co/princeton-nlp/MADE. All of the models are based on the RoBERTa-base model. They are:

To download just the MADE Transformer and adapters:

mkdir made_transformer
wget https://huggingface.co/princeton-nlp/MADE/resolve/main/made_transformer/model.pt -O made_transformer/model.pt

mkdir made_tuned_adapters
for d in SQuAD HotpotQA TriviaQA SearchQA NewsQA NaturalQuestions; do
  mkdir "made_tuned_adapters/${d}"
  wget "https://huggingface.co/princeton-nlp/MADE/resolve/main/made_tuned_adapters/${d}/model.pt" -O "made_tuned_adapters/${d}/model.pt"
done;

You can download all of the models at once by cloning the repository (first installing Git LFS):

git lfs install
git clone https://huggingface.co/princeton-nlp/MADE
mv MADE models

Run the model

The scripts in scripts/train/ and scripts/transfer/ provide examples of how to run the code. For more details, see the descriptions of the command line flags in run.py.

Train

You can use the scripts in scripts/train/ to train models on the MRQA datasets. For example, to train MADE:

./scripts/train/made_training.sh

And to tune the MADE adapters separately on individual datasets:

for d in SQuAD HotpotQA TriviaQA SearchQA NewsQA NaturalQuestions; do
  ./scripts/train/made_adapter_tuning.sh $d
done;

See run.py for details about the command line arguments.

Evaluate

A single fine-tuned model:

python run.py \
    --eval_on BioASQ DROP DuoRC RACE RelationExtraction TextbookQA \
    --load_from multi_dataset_ft \
    --output_dir output/zero_shot/multi_dataset_ft

An individual MADE adapter (e.g. SQuAD):

python run.py \
    --eval_on BioASQ DROP DuoRC RACE RelationExtraction TextbookQA \
    --load_from made_transformer \
    --load_adapters_from made_tuned_adapters \
    --adapter \
    --adapter_name SQuAD \
    --output_dir output/zero_shot/made_tuned_adapters/SQuAD

An individual single-dataset adapter (e.g. SQuAD):

python run.py \
    --eval_on BioASQ DROP DuoRC RACE RelationExtraction TextbookQA \
    --load_adapters_from single_dataset_adapters/ \
    --adapter \
    --adapter_name SQuAD \
    --output_dir output/zero_shot/single_dataset_adapters/SQuAD

An ensemble of MADE adapters. This will run a forward pass through every adapter in parallel.

python run.py \
    --eval_on BioASQ DROP DuoRC RACE RelationExtraction TextbookQA \
    --load_from made_transformer \
    --load_adapters_from made_tuned_adapters \
    --adapter_names SQuAD HotpotQA TriviaQA SearchQA NewsQA NaturalQuestions \
    --made \
    --parallel_adapters  \
    --output_dir output/zero_shot/made_ensemble

Averaging the parameters of the MADE adapters:

python run.py \
    --eval_on BioASQ DROP DuoRC RACE RelationExtraction TextbookQA \
    --load_from made_transformer \
    --load_adapters_from made_tuned_adapters \
    --adapter_names SQuAD HotpotQA TriviaQA SearchQA NewsQA NaturalQuestions \
    --adapter \
    --average_adapters  \
    --output_dir output/zero_shot/made_avg

Running UnifiedQA:

python run.py \
    --eval_on BioASQ DROP DuoRC RACE RelationExtraction TextbookQA \
    --seq2seq \
    --model_name_or_path allenai/unifiedqa-t5-base \
    --output_dir output/zero_shot/unifiedqa

Transfer

The scripts in scripts/transfer/ provide examples of how to run the few-shot transfer learning experiments described in the paper. For example, the following command will repeat for three random seeds: (1) sample 64 training examples from BioASQ, (2) calculate the zero-shot loss of all the MADE adapters on the training examples, (3) average the adapter parameters in proportion to zero-shot loss, (4) hold out 32 training examples for validation data, (5) train the adapter until performance stops improving on the 32 validation examples, and (6) evaluate the adapter on the full development set.

python run.py \
    --train_on BioASQ \
    --adapter_names SQuAD HotpotQA TriviaQA NewsQA SearchQA NaturalQuestions \
    --made \
    --parallel_made \
    --weighted_average_before_training \
    --adapter_learning_rate 1e-5 \
    --steps 200 \
    --patience 10 \
    --eval_before_training \
    --full_eval_after_training \
    --max_train_examples 64 \
    --few_shot \
    --criterion "loss" \
    --negative_examples \
    --save \
    --seeds 7 19 29 \
    --load_from "made_transformer" \
    --load_adapters_from "made_tuned_adapters" \
    --name "transfer/made_preaverage/BioASQ/64"

Bugs or questions?

If you have any questions related to the code or the paper, feel free to email Dan Friedman ([email protected]). If you encounter any problems when using the code, or want to report a bug, you can open an issue. Please try to specify the problem with details so we can help you better and quicker!

Citation

@inproceedings{friedman2021single,
   title={Single-dataset Experts for Multi-dataset QA},
   author={Friedman, Dan and Dodge, Ben and Chen, Danqi},
   booktitle={Empirical Methods in Natural Language Processing (EMNLP)},
   year={2021}
}
Owner
Princeton Natural Language Processing
Princeton Natural Language Processing
Kaggle: Cell Instance Segmentation

Kaggle: Cell Instance Segmentation The goal of this challenge is to detect cells in microscope images. with simple view on how many cels have been ann

Jirka Borovec 9 Aug 12, 2022
Python scripts form performing stereo depth estimation using the CoEx model in ONNX.

ONNX-CoEx-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the CoEx model in ONNX. Stereo depth estimation on the

Ibai Gorordo 8 Dec 29, 2022
Minimal PyTorch implementation of YOLOv3

A minimal PyTorch implementation of YOLOv3, with support for training, inference and evaluation.

Erik Linder-Norén 6.9k Dec 29, 2022
NeROIC: Neural Object Capture and Rendering from Online Image Collections

NeROIC: Neural Object Capture and Rendering from Online Image Collections This repository is for the source code for the paper NeROIC: Neural Object C

Snap Research 647 Dec 27, 2022
The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021)

The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021) Arash Vahdat*   ·   Karsten Kreis*   ·  

NVIDIA Research Projects 238 Jan 02, 2023
Video Frame Interpolation with Transformer (CVPR2022)

VFIformer Official PyTorch implementation of our CVPR2022 paper Video Frame Interpolation with Transformer Dependencies python = 3.8 pytorch = 1.8.0

DV Lab 63 Dec 16, 2022
Class-Balanced Loss Based on Effective Number of Samples. CVPR 2019

Class-Balanced Loss Based on Effective Number of Samples Tensorflow code for the paper: Class-Balanced Loss Based on Effective Number of Samples Yin C

Yin Cui 546 Jan 08, 2023
Pytorch implementation of ProjectedGAN

ProjectedGAN-pytorch Pytorch implementation of ProjectedGAN (https://arxiv.org/abs/2111.01007) Note: this repository is still under developement. @InP

Dominic Rampas 17 Dec 14, 2022
Implementation of the state of the art beat-detection, downbeat-detection and tempo-estimation model

The ISMIR 2020 Beat Detection, Downbeat Detection and Tempo Estimation Model Implementation. This is an implementation in TensorFlow to implement the

Koen van den Brink 1 Nov 12, 2021
Home for cuQuantum Python & NVIDIA cuQuantum SDK C++ samples

Welcome to the cuQuantum repository! This public repository contains two sets of files related to the NVIDIA cuQuantum SDK: samples: All C/C++ sample

NVIDIA Corporation 147 Dec 27, 2022
This repository is a series of notebooks that show solutions for the projects at Dataquest.io.

Dataquest Project Solutions This repository is a series of notebooks that show solutions for the projects at Dataquest.io. Of course, there are always

Dataquest 1.1k Dec 30, 2022
Data Consistency for Magnetic Resonance Imaging

Data Consistency for Magnetic Resonance Imaging Data Consistency (DC) is crucial for generalization in multi-modal MRI data and robustness in detectin

Dimitris Karkalousos 19 Dec 12, 2022
Model search is a framework that implements AutoML algorithms for model architecture search at scale

Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model a

Google 3.2k Dec 31, 2022
LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

donglee 279 Dec 13, 2022
Discovering Interpretable GAN Controls [NeurIPS 2020]

GANSpace: Discovering Interpretable GAN Controls Figure 1: Sequences of image edits performed using control discovered with our method, applied to thr

Erik Härkönen 1.7k Jan 03, 2023
Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Learned Virtual View Visibility ICCV2021

Vis2Mesh This is the offical repository of the paper: Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Lear

71 Dec 25, 2022
2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup)智能人机交互自然语言理解赛道第二名参赛解决方案

2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup) 智能人机交互自然语言理解赛道第二名解决方案 比赛网址: CCIR-Cup-智能人机交互自然语言理解 1.依赖环境: python==3.8 torch==1.7.1+cu110 numpy==1.19.2 transformers=

JinXiang 22 Oct 29, 2022
Kohei's 5th place solution for xview3 challenge

xview3-kohei-solution Usage This repository assumes that the given data set is stored in the following locations: $ ls data/input/xview3/*.csv data/in

Kohei Ozaki 2 Jan 17, 2022
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
This is a computer vision based implementation of the popular childhood game 'Hand Cricket/Odd or Even' in python

Hand Cricket Table of Content Overview Installation Game rules Project Details Future scope Overview This is a computer vision based implementation of

Abhinav R Nayak 6 Jan 12, 2022