This is a Python binding to the tokenizer Ucto. Tokenisation is one of the first step in almost any Natural Language Processing task, yet it is not always as trivial a task as it appears to be. This binding makes the power of the ucto tokeniser available to Python. Ucto itself is regular-expression based, extensible, and advanced tokeniser written in C++ (http://ilk.uvt.nl/ucto).

Overview
http://applejack.science.ru.nl/lamabadge.php/python-ucto Project Status: Active – The project has reached a stable, usable state and is being actively developed.

Ucto for Python

This is a Python binding to the tokeniser Ucto. Tokenisation is one of the first step in almost any Natural Language Processing task, yet it is not always as trivial a task as it appears to be. This binding makes the power of the ucto tokeniser available to Python. Ucto itself is a regular-expression based, extensible, and advanced tokeniser written in C++ (https://languagemachines.github.io/ucto).

Installation

Easy

Manual (Advanced)

  • Make sure to first install ucto itself (https://languagemachines.github.io/ucto) and all its dependencies.
  • Install Cython if not yet available on your system: $ sudo apt-get cython cython3 (Debian/Ubuntu, may differ for others)
  • Clone this repository and run: $ sudo python setup.py install (Make sure to use the desired version of python)

Advanced note: If the ucto libraries and includes are installed in a non-standard location, you can set environment variables INCLUDE_DIRS and LIBRARY_DIRS to point to them prior to invocation of setup.py install.

Usage

Import and instantiate the Tokenizer class with a configuration file.

import ucto
configurationfile = "tokconfig-eng"
tokenizer = ucto.Tokenizer(configurationfile)

The configuration files supplied with ucto are named tokconfig-xxx where xxx corresponds to a three letter iso-639-3 language code. There is also a tokconfig-generic one that has no language-specific rules. Alternatively, you can make and supply your own configuration file. Note that for older versions of ucto you may need to provide the absolute path, but the latest versions will find the configurations supplied with ucto automatically. See here for a list of available configuration in the latest version.

The constructor for the Tokenizer class takes the following keyword arguments:

  • lowercase (defaults to False) -- Lowercase all text
  • uppercase (defaults to False) -- Uppercase all text
  • sentenceperlineinput (defaults to False) -- Set this to True if each sentence in your input is on one line already and you do not require further sentence boundary detection from ucto.
  • sentenceperlineoutput (defaults to False) -- Set this if you want each sentence to be outputted on one line. Has not much effect within the context of Python.
  • paragraphdetection (defaults to True) -- Do paragraph detection. Paragraphs are simply delimited by an empty line.
  • quotedetection (defaults to False) -- Set this if you want to enable the experimental quote detection, to detect quoted text (enclosed within some sort of single/double quote)
  • debug (defaults to False) -- Enable verbose debug output

Text is passed to the tokeniser using the process() method, this method returns the number of tokens rather than the tokens itself. It may be called multiple times in sequence. The tokens themselves will be buffered in the Tokenizer instance and can be obtained by iterating over it, after which the buffer will be cleared:

#pass the text (a str) (may be called multiple times),
tokenizer.process(text)

#read the tokenised data
for token in tokenizer:
    #token is an instance of ucto.Token, serialise to string using str()
    print(str(token))

    #tokens remember whether they are followed by a space
    if token.isendofsentence():
        print()
    elif not token.nospace():
        print(" ",end="")

The process() method takes a single string (str), as parameter. The string may contain newlines, and newlines are not necessary sentence bounds unless you instantiated the tokenizer with sentenceperlineinput=True.

Each token is an instance of ucto.Token. It can be serialised to string using str() as shown in the example above.

The following methods are available on ucto.Token instances: * isendofsentence() -- Returns a boolean indicating whether this is the last token of a sentence. * nospace() -- Returns a boolean, if True there is no space following this token in the original input text. * isnewparagraph() -- Returns True if this token is the start of a new paragraph. * isbeginofquote() * isendofquote() * tokentype -- This is an attribute, not a method. It contains the type or class of the token (e.g. a string like WORD, ABBREVIATION, PUNCTUATION, URL, EMAIL, SMILEY, etc..)

In addition to the low-level process() method, the tokenizer can also read an input file and produce an output file, in the same fashion as ucto itself does when invoked from the command line. This is achieved using the tokenize(inputfilename, outputfilename) method:

tokenizer.tokenize("input.txt","output.txt")

Input and output files may be either plain text, or in the FoLiA XML format. Upon instantiation of the Tokenizer class, there are two keyword arguments to indicate this:

  • xmlinput or foliainput -- A boolean that indicates whether the input is FoLiA XML (True) or plain text (False). Defaults to False.
  • xmloutput or foliaoutput -- A boolean that indicates whether the input is FoLiA XML (True) or plain text (False). Defaults to False. If this option is enabled, you can set an additional keyword parameter docid (string) to set the document ID.

An example for plain text input and FoLiA output:

tokenizer = ucto.Tokenizer(configurationfile, foliaoutput=True)
tokenizer.tokenize("input.txt", "ucto_output.folia.xml")

FoLiA documents retain all the information ucto can output, unlike the plain text representation. These documents can be read and manipulated from Python using the FoLiaPy library. FoLiA is especially recommended if you intend to further enrich the document with linguistic annotation. A small example of reading ucto's FoLiA output using this library follows, but consult the documentation for more:

import folia.main as folia
doc = folia.Document(file="ucto_output.folia.xml")
for paragraph in doc.paragraphs():
    for sentence in paragraph.sentence():
        for word in sentence.words()
            print(word.text(), end="")
            if word.space:
                print(" ", end="")
        print()
    print()

Test and Example

Run and inspect example.py.

Comments
  • undefined symbol: ...

    undefined symbol: ...

    Hi there,

    I have a clean ucto installation from sudo apt install ucto. When I compile the python extension, however, I can't import it since it fails with:

    ImportError: /home/manjavacas/.pyenv/versions/anaconda3-4.4.0/lib/python3.6/site-packages/ucto.cpython-36m-x86_64-linux-gnu.so: undefined symbol: _ZN9Tokenizer14TokenizerClass4initERKSs
    

    Not sure what might be going bad, since ucto works perfectly fine and the extension manages to compile without errors.

    Any ideas?

    question 
    opened by emanjavacas 8
  • Compilation fails after latest ucto release

    Compilation fails after latest ucto release

        gcc -pthread -Wno-unused-result -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -march=x86-64 -mtune=generic -O3 -pipe -fno-plt -march=x86-64 -mtune=generic -O3 -pipe -fno-plt -march=x86-64 -mtune=generic -O3 -pipe -fno-plt -fPIC -I/home/proycon/envs/dev
    /include -I/usr/include/ -I/usr/include/libxml2 -I/usr/local/include/ -I/home/proycon/envs/dev/include -I/usr/include/python3.10 -c ucto_wrapper.cpp -o build/temp.linux-x86_64-3.10/ucto_wrapper.o --std=c++0x -D U_USING_ICU_NAMESPACE=1
        ucto_wrapper.cpp: In function ‘PyObject* __pyx_gb_4ucto_9Tokenizer_8generator(__pyx_CoroutineObject*, PyThreadState*, PyObject*)’:
        ucto_wrapper.cpp:3750:86: error: no match for ‘operator=’ (operand types are ‘std::vector<std::__cxx11::basic_string<char> >’ and ‘std::vector<icu_70::UnicodeString>’)
         3750 |   __pyx_cur_scope->__pyx_v_results = __pyx_cur_scope->__pyx_v_self->tok.getSentences();
    
    bug 
    opened by proycon 3
  • Tokenizer does not return lowercase tokens when lowercase = True

    Tokenizer does not return lowercase tokens when lowercase = True

    When I call tokenizer with lowercase True, the output contains tokens with uppercase.

    t = ucto.Tokenizer("tokconfig-nld",lowercase = True,sentencedetection=False,paragraphdetection=False)
    ucto: textcat configured from: /vol/customopt/lamachine.stable/share/ucto/textcat.cfg

    z = x.article_set.all()[0]

    t.process(z.text)

    [str(token) for token in t]

    ["'", 'oor', 'onze', 'redacteur', 'mr.', 'F.', 'KUITENBROUWER', 'AMSTERDAM',

    bug 
    opened by martijnbentum 3
  • Manual installation fails: config.h: no such file or directory

    Manual installation fails: config.h: no such file or directory

    I’ve tried to follow the manual installation instructions on Ubuntu 16.04, but it seems to be missing a file:

    [email protected]:~/git/python-ucto$ git status
    On branch master
    Your branch is up-to-date with 'origin/master'.
    nothing to commit, working directory clean
    [email protected]:~/git/python-ucto$ uname -a
    Linux unut 4.4.0-124-generic #148-Ubuntu SMP Wed May 2 13:00:18 UTC 2018 x86_64 x86_64 x86_64 GNU/Linux
    [email protected]:~/git/python-ucto$ sudo python setup.py install 
    /usr/lib/python2.7/distutils/dist.py:267: UserWarning: Unknown distribution option: 'install_requires'
      warnings.warn(msg)
    running install
    running build
    running build_ext
    cythoning ucto_wrapper2.pyx to ucto_wrapper2.cpp
    building 'ucto' extension
    x86_64-linux-gnu-gcc -pthread -DNDEBUG -g -fwrapv -O2 -Wall -Wstrict-prototypes -fno-strict-aliasing -Wdate-time -D_FORTIFY_SOURCE=2 -g -fstack-protector-strong -Wformat -Werror=format-security -fPIC -I/usr/include/ -I/usr/include/libxml2 -I/usr/local/include/ -I/usr/include/python2.7 -c ucto_wrapper2.cpp -o build/temp.linux-x86_64-2.7/ucto_wrapper2.o --std=c++0x -D U_USING_ICU_NAMESPACE=1
    cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++
    In file included from ucto_wrapper2.cpp:457:0:
    /usr/include/ucto/tokenize.h:33:20: fatal error: config.h: No such file or directory
    compilation terminated.
    error: command 'x86_64-linux-gnu-gcc' failed with exit status 1
    
    opened by texttheater 3
  • TokenRole has no attribute ENDOFQUOTE

    TokenRole has no attribute ENDOFQUOTE

    Hi there, I noticed that isendofquote seems to be broken.

    Seems like a typo on this line:

    https://github.com/proycon/python-ucto/blob/65a7f03a92f60fa28e330a5fb735d75230cdbec4/ucto_wrapper.pyx#L29

    which should be rather ENDOFQUOTE.

    bug 
    opened by emanjavacas 1
  • Question: possible to retrieve untokenized sentences?

    Question: possible to retrieve untokenized sentences?

    May sound silly, but would it be possible to create a method that would allow retrieving sentences from the tokenizer without whitespace between punctuation marks (e.g. untokenized)? E.g. maybe providing a tuple that would hold two versions of a sentence, both the tokenized, as well as the original?

    It is practical to keep the untokenized sentence in some scenarios (e.g. showing them to end users), and reconstructing it by script would be rather hacky and imprecise I guess.

    enhancement 
    opened by pirolen 1
Releases(v0.6.1)
Owner
Maarten van Gompel
Research software engineer - NLP - AI - 🐧 Linux & open-source enthusiast - 🐍 Python/ 🌊C/C++ / 🦀 Rust / 🐚 Shell - 🔐 Privacy, Security & Decentralisation
Maarten van Gompel
spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines

spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines spaCy-wrap is minimal library intended for wrapping fine-tuned transformers from t

Kenneth Enevoldsen 32 Dec 29, 2022
Fully featured implementation of Routing Transformer

Routing Transformer A fully featured implementation of Routing Transformer. The paper proposes using k-means to route similar queries / keys into the

Phil Wang 246 Jan 02, 2023
Train 🤗-transformers model with Poutyne.

poutyne-transformers Train 🤗 -transformers models with Poutyne. Installation pip install poutyne-transformers Example import torch from transformers

Lennart Keller 2 Dec 18, 2022
Extract rooms type, door, neibour rooms, rooms corners nad bounding boxes, and generate graph from rplan dataset

Housegan-data-reader House-GAN++ (data-reader) Code and instructions for converting rplan dataset (raster images) to housegan++ data format. House-GAN

Sepid Hosseini 13 Nov 24, 2022
A benchmark for evaluation and comparison of various NLP tasks in Persian language.

Persian NLP Benchmark The repository aims to track existing natural language processing models and evaluate their performance on well-known datasets.

Mofid AI 68 Dec 19, 2022
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022
Minimal GUI for accessing the Watson Text to Speech service.

Description Minimal graphical application for accessing the Watson Text to Speech service. Requirements Python 3 plus all dependencies listed in requi

Moritz Maxeiner 1 Oct 22, 2021
GPT-2 Model for Leetcode Questions in python

Leetcode using AI 🤖 GPT-2 Model for Leetcode Questions in python New demo here: https://huggingface.co/spaces/gagan3012/project-code-py Note: the Ans

Gagan Bhatia 100 Dec 12, 2022
NLPShala , the best IDE for all Natural language processing tasks.

The revolutionary IDE for all NLP (Natural language processing) stuffs on the internet.

Abhi 3 Aug 08, 2021
🏖 Easy training and deployment of seq2seq models.

Headliner Headliner is a sequence modeling library that eases the training and in particular, the deployment of custom sequence models for both resear

Axel Springer Ideas Engineering GmbH 231 Nov 18, 2022
To classify the News into Real/Fake using Features from the Text Content of the article

Hoax-Detector Authenticity of news has now become a major problem. The Idea is to classify the News into Real/Fake using Features from the Text Conten

Aravindhan 1 Feb 09, 2022
Meta learning algorithms to train cross-lingual NLI (multi-task) models

Meta learning algorithms to train cross-lingual NLI (multi-task) models

M.Hassan Mojab 4 Nov 20, 2022
Twitter-Sentiment-Analysis - Analysis of twitter posts' positive and negative score.

Twitter-Sentiment-Analysis The hands-on project is in Python 3 Programming class offered by University of Michigan via Coursera. The task is to build

Eszter Pai 1 Jan 03, 2022
Repository for the paper "Optimal Subarchitecture Extraction for BERT"

Bort Companion code for the paper "Optimal Subarchitecture Extraction for BERT." Bort is an optimal subset of architectural parameters for the BERT ar

Alexa 461 Nov 21, 2022
🏆 • 5050 most frequent words in 109 languages

🏆 Most Common Words Multilingual 5000 most frequent words in 109 languages. Uses wordfrequency.info as a source. 🔗 License source code license data

14 Nov 24, 2022
This repository details the steps in creating a Part of Speech tagger using Trigram Hidden Markov Models and the Viterbi Algorithm without using external libraries.

POS-Tagger This repository details the creation of a Part-of-Speech tagger using Trigram Hidden Markov Models to predict word tags in a word sequence.

Raihan Ahmed 1 Dec 09, 2021
CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

CodeBERT This repo provides the code for reproducing the experiments in CodeBERT: A Pre-Trained Model for Programming and Natural Languages. CodeBERT

Microsoft 1k Jan 03, 2023
Text Classification in Turkish Texts with Bert

You can watch the details of the project on my youtube channel Project Interface Project Second Interface Goal= Correctly guessing the classification

42 Dec 31, 2022
ADCS cert template modification and ACL enumeration

Purpose This tool is designed to aid an operator in modifying ADCS certificate templates so that a created vulnerable state can be leveraged for privi

Fortalice Solutions, LLC 78 Dec 12, 2022
Train and use generative text models in a few lines of code.

blather Train and use generative text models in a few lines of code. To see blather in action check out the colab notebook! Installation Use the packa

Dan Carroll 16 Nov 07, 2022