Forecasting directional movements of stock prices for intraday trading using LSTM and random forest

Overview

Forecasting directional movements of stock-prices for intraday trading using LSTM and random-forest

https://arxiv.org/abs/2004.10178
Pushpendu Ghosh, Ariel Neufeld, Jajati K Sahoo

We employ both random forests on the one hand and LSTM networks (more precisely CuDNNLSTM) on the other hand as training methodology to analyze their effectiveness in forecasting out-of-sample directional movements of constituent stocks of the S&P 500, for intraday trading, from January 1993 till December 2018.

Requirements

pip install scikit-learn==0.20.4
pip install tensorflow==1.14.0

Plots

We plot three important metrics to quantify the effectiveness of our model: Intraday-240,3-LSTM.py and Intraday-240,3-RF.py, in the period January 1993 till December 2018.
Intraday LSTM: Intraday-240,3-LSTM.py
Intraday RF: Intraday-240,3-RF.py
Next Day LSTM, krauss18: NextDay-240,1-LSTM.py [1]
Next Day RF, krauss17: NextDay-240,1-RF.py [2]

Cumulative Money growth (after transaction cost)

Average daily returns (after transaction cost)

Average (Annualized) Sharpe ratio (after transaction cost)

Appendix

Feature Importance

This figure analyzes the Sharpe Ratio achieved when single features are used instead of our 3-features for the same intraday trading strategy. It hence analyzes which single feature is important.
The result suggest that or (returns from close price to next day open price) has the highest importance. This is justifiable by the fact that it is the only feature which considers the latest available data (the trading day's open price) at the time of making the trading decision. We also see that our 3-features setting achieves the highest Sharpe Ratio and hence outperforms each single feature.

LSTM hyperparameter tuning

We see that the amount of 25 cells for our chosen LSTM architecture to be at least as good as other amounts between 5 and 100. We have chosen 25 cells also for the ease of comparison with Fischer & Krauss (2018)

Benchmark against other LSTM architectures

We consider various new LSTM architectures. Note that the other LSTM architectures involve much more parameters than the one we chose for our empirical study and do not achieve better results in terms of Sharpe Ratio. Moreover, we also compare our LSTM architecture with GRU, which is a relatively simpler variation of LSTM, and see that it generates reasonably good but still slightly lower Sharpe ratio than our chosen LSTM architecture.

References to the LSTM models:

  1. Single Layer GRU: https://arxiv.org/abs/1412.3555
  2. Stacked LSTM: https://www.sciencedirect.com/science/article/pii/S1877050920304865
  3. Stacked Residual LSTM: https://arxiv.org/abs/1610.03098

Acknowledgements

The first author gratefully acknowledges the NTU-India Connect Research Internship Programme which allowed him to carry out part of this research project while visiting the Nanyang Technological University, Singapore.
The second author gratefully acknowledges financial support by his Nanyang Assistant Professorship Grant (NAP Grant) Machine Learning based Algorithms in Finance and Insurance.

References

[1] Fischer, Thomas, and Christopher Krauss. "Deep learning with long short-term memory networks for financial market predictions." European Journal of Operational Research 270.2 (2018): 654-669.
[2] Krauss, Christopher, Xuan Anh Do, and Nicolas Huck. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500." European Journal of Operational Research 259.2 (2017): 689-702.

Owner
Pushpendu Ghosh
Pushpendu Ghosh
Human Action Controller - A human action controller running on different platforms.

Human Action Controller (HAC) Goal A human action controller running on different platforms. Fun Easy-to-use Accurate Anywhere Fun Examples Mouse Cont

27 Jul 20, 2022
iris - Open Source Photos Platform Powered by PyTorch

Open Source Photos Platform Powered by PyTorch. Submission for PyTorch Annual Hackathon 2021.

Omkar Prabhu 137 Sep 10, 2022
Road Crack Detection Using Deep Learning Methods

Road-Crack-Detection-Using-Deep-Learning-Methods This is my Diploma Thesis ¨Road Crack Detection Using Deep Learning Methods¨ under the supervision of

Aggelos Katsaliros 3 May 03, 2022
Deep Learning Specialization by Andrew Ng, deeplearning.ai.

Deep Learning Specialization on Coursera Master Deep Learning, and Break into AI This is my personal projects for the course. The course covers deep l

Engen 1.5k Jan 07, 2023
Codebase for the Summary Loop paper at ACL2020

Summary Loop This repository contains the code for ACL2020 paper: The Summary Loop: Learning to Write Abstractive Summaries Without Examples. Training

Canny Lab @ The University of California, Berkeley 44 Nov 04, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
Image to Image translation, image generataton, few shot learning

Semi-supervised Learning for Few-shot Image-to-Image Translation [paper] Abstract: In the last few years, unpaired image-to-image translation has witn

yaxingwang 49 Nov 18, 2022
the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)

RMA-Net This repo is the implementation of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021). Paper

Wanquan Feng 205 Nov 09, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

ObjProp Introduction This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Insta

Anirudh S Chakravarthy 6 May 03, 2022
Campsite Reservation Finder

yellowstone-camping UPDATE: yellowstone-camping is being expanded and renamed to camply. The updated tool now interfaces with the Recreation.gov API a

Justin Flannery 233 Jan 08, 2023
A Pytorch implementation of "LegoNet: Efficient Convolutional Neural Networks with Lego Filters" (ICML 2019).

LegoNet This code is the implementation of ICML2019 paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters Run python train.py You c

YangZhaohui 140 Sep 26, 2022
Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

Time2box Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

LingCai 4 Aug 23, 2022
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022
An implementation of a discriminant function over a normal distribution to help classify datasets.

CS4044D Machine Learning Assignment 1 By Dev Sony, B180297CS The question, report and source code can be found here. Github Repo Solution 1 Based on t

Dev Sony 6 Nov 09, 2021
Official implementation of Sparse Transformer-based Action Recognition

STAR Official implementation of S parse T ransformer-based A ction R ecognition Dataset download NTU RGB+D 60 action recognition of 2D/3D skeleton fro

Chonghan_Lee 15 Nov 02, 2022
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Felix Köhler 4 Nov 12, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Music Source Separation with Channel-wise Subband Phase Aware ResUnet (CWS-PResUNet) Introduction This repo contains the pretrained Music Source Separ

Lau 100 Dec 25, 2022
Self-Supervised CNN-GCN Autoencoder

GCNDepth Self-Supervised CNN-GCN Autoencoder GCNDepth: Self-supervised monocular depth estimation based on graph convolutional network To be published

53 Dec 14, 2022
[ICML'21] Estimate the accuracy of the classifier in various environments through self-supervision

What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments? [Paper] [ICML'21 Project] PyTorch Implementation T

24 Oct 26, 2022
Codes for paper "KNAS: Green Neural Architecture Search"

KNAS Codes for paper "KNAS: Green Neural Architecture Search" KNAS is a green (energy-efficient) Neural Architecture Search (NAS) approach. It contain

90 Dec 22, 2022