PyTorch code for the paper "Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval".

Overview

Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval (M2HSE)

PyTorch code for M2HSE. The local-level subenetwork of our M2HSE is built on top of the VSESC.

Xinlei Pei, Zheng Liu, Shaojing Yuan, Shanshan Gao, Huijian Han and Caiming Zhang. "Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval".

Introduction

We give a demo code of the Corel 5K dataset, including the details of training process for the global-level subnetwork and the local-level subnetwork.

Requirements

We recommended the following dependencies.

  • Python 3.6

  • PyTorch (1.3.1)

  • NumPy (1.19.2)

  • Punkt Sentence Tokenizer:

import nltk
nltk.download()
> d punkt

Download data

The raw images and the corrsponding texts can be downloaded from here. Note that we performed data cleaning on this dataset and the specific operations are described in the paper.

Besides, 1) for extracting the fine-grained visual features, the raw images are divided uniformly into 3*3 blocks. 2) we adopt the AlexNet, pre-trained on ImageNet, to extract the CNN features. 3) We upload text data in the ./data/coarse-grained-data/ and ./data/fine-grained-data . Therefore, for data preparation you have the following two options :

  1. Download the above raw data and extract the corresponding features according to the strategy we introduced in the paper.
  2. Contact us for relevant data. (Email: [email protected])

Training models

  • For training the global-level subnetwork:

    Run train_global.py:

    python train_global.py 
        --data_path ./data/coarse-grained-data
        --data_name corel5k_precomp 
        --vocab_path ./vocab 
        --logger_name ./checkpoint/M2HSE/Global/Corel5K 
        --model_name ./checkpoint/M2HSE/Global/Corel5K 
        --num_epochs 100 
        --lr_updata 50 
        --batchsize 100  
        --gamma_1 1 
        --gamma_2 .5 
        --alpha_1 .8 
        --alpha_2 .8
  • For training the local-level subnetwork:

    Run train_local.py:

    python train_local.py 
        --data_path ./data/fine-grained-data
        --data_name corel5k_precomp 
        --vocab_path ./vocab 
        --logger_name ./checkpoint/M2HSE/Local/Corel5K 
        --model_name ./checkpoint/M2HSE/Local/Corel5K 
        --num_epochs 100 
        --lr_updata 50 
        --batchsize 100  
        --gamma_1 1 
        --gamma_2 .5 
        --beta_1 .4 
        --beta_2 .4

Reference

Stay tuned. :)

License

Apache License 2.0

Owner
Xinlei-Pei
A Noob in Cross-modal Retrieval.
Xinlei-Pei
Joint project of the duo Hacker Ninjas

Project Smoothie Společný projekt dua Hacker Ninjas. První pokus o hříčku po třech týdnech učení se programování. Jakub Kolář e:\

Jakub Kolář 2 Jan 07, 2022
A Python Package For System Identification Using NARMAX Models

SysIdentPy is a Python module for System Identification using NARMAX models built on top of numpy and is distributed under the 3-Clause BSD license. N

Wilson Rocha 175 Dec 25, 2022
MinHash, LSH, LSH Forest, Weighted MinHash, HyperLogLog, HyperLogLog++, LSH Ensemble

datasketch: Big Data Looks Small datasketch gives you probabilistic data structures that can process and search very large amount of data super fast,

Eric Zhu 1.9k Jan 07, 2023
Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance

Nested Graph Neural Networks About Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance.

Muhan Zhang 38 Jan 05, 2023
ACV is a python library that provides explanations for any machine learning model or data.

ACV is a python library that provides explanations for any machine learning model or data. It gives local rule-based explanations for any model or data and different Shapley Values for tree-based mod

Salim Amoukou 85 Dec 27, 2022
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms

FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,

Rishikesh (ऋषिकेश) 218 Jan 05, 2023
The official PyTorch code for NeurIPS 2021 ML4AD Paper, "Does Thermal data make the detection systems more reliable?"

MultiModal-Collaborative (MMC) Learning Framework for integrating RGB and Thermal spectral modalities This is the official code for NeurIPS 2021 Machi

NeurAI 12 Nov 02, 2022
Official implementation of "An Image is Worth 16x16 Words, What is a Video Worth?" (2021 paper)

An Image is Worth 16x16 Words, What is a Video Worth? paper Official PyTorch Implementation Gilad Sharir, Asaf Noy, Lihi Zelnik-Manor DAMO Academy, Al

213 Nov 12, 2022
This tool uses Deep Learning to help you draw and write with your hand and webcam.

This tool uses Deep Learning to help you draw and write with your hand and webcam. A Deep Learning model is used to try to predict whether you want to have 'pencil up' or 'pencil down'.

lmagne 169 Dec 10, 2022
Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

105 Nov 07, 2022
Implementation of "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

GLAT Implementation for the ACL2021 paper "Glancing Transformer for Non-Autoregressive Neural Machine Translation" Requirements Python = 3.7 Pytorch

117 Jan 09, 2023
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization This is the official implementaion of paper TS-CAM: Token Semant

vasgaowei 112 Jan 02, 2023
Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'

pytorch-AdaIN This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Hua

Naoto Inoue 873 Jan 06, 2023
This is a work in progress reimplementation of Instant Neural Graphics Primitives

Neural Hash Encoding This is a work in progress reimplementation of Instant Neural Graphics Primitives Currently this can train an implicit representa

Penn 79 Sep 01, 2022
The "breathing k-means" algorithm with datasets and example notebooks

The Breathing K-Means Algorithm (with examples) The Breathing K-Means is an approximation algorithm for the k-means problem that (on average) is bette

Bernd Fritzke 75 Nov 17, 2022
Reproduction of Vision Transformer in Tensorflow2. Train from scratch and Finetune.

Vision Transformer(ViT) in Tensorflow2 Tensorflow2 implementation of the Vision Transformer(ViT). This repository is for An image is worth 16x16 words

sungjun lee 42 Dec 27, 2022
The official repository for "Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning" paper.

Intermdiate layer matters - SSL The official repository for "Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning" paper. Downl

Aakash Kaku 35 Sep 19, 2022
【steal piano】GitHub偷情分析工具!

【steal piano】GitHub偷情分析工具! 你是否有这样的困扰,有一天你的仓库被很多人加了star,但是你却不知道这些人都是从哪来的? 别担心,GitHub偷情分析工具帮你轻松解决问题! 原理 GitHub偷情分析工具透过分析star的时间以及他们之间的follow关系,可以推测出每个st

黄巍 442 Dec 21, 2022