Pytorch re-implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text Recognition (CVPR 2022)

Overview

SwinTextSpotter

This is the pytorch implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text Recognition (CVPR 2022). The paper is available at this link.

Models

SWINTS-swin-english-pretrain [config] | model_Google Drive | model_BaiduYun PW: 954t

SWINTS-swin-Total-Text [config] | model_Google Drive | model_BaiduYun PW: tf0i

SWINTS-swin-ctw [config] | model_Google Drive | model_BaiduYun PW: 4etq

SWINTS-swin-icdar2015 [config] | model_Google Drive | model_BaiduYun PW: 3n82

SWINTS-swin-ReCTS [config] | model_Google Drive | model_BaiduYun PW: a4be

SWINTS-swin-vintext [config] | model_Google Drive | model_BaiduYun PW: slmp

Installation

  • Python=3.8
  • PyTorch=1.8.0, torchvision=0.9.0, cudatoolkit=11.1
  • OpenCV for visualization

Steps

  1. Install the repository (we recommend to use Anaconda for installation.)
conda create -n SWINTS python=3.8 -y
conda activate SWINTS
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge
pip install opencv-python
pip install scipy
pip install shapely
pip install rapidfuzz
pip install timm
pip install Polygon3
git clone https://github.com/mxin262/SwinTextSpotter.git
cd SwinTextSpotter
python setup.py build develop
  1. dataset path
datasets
|_ totaltext
|  |_ train_images
|  |_ test_images
|  |_ totaltext_train.json
|  |_ weak_voc_new.txt
|  |_ weak_voc_pair_list.txt
|_ mlt2017
|  |_ train_images
|  |_ annotations/icdar_2017_mlt.json
.......

Downloaded images

Downloaded label[Google Drive] [BaiduYun] PW: 46vd

Downloader lexicion[Google Drive] and place it to corresponding dataset.

You can also prepare your custom dataset following the example scripts. [example scripts]

Totaltext

To evaluate on Total Text, CTW1500, ICDAR2015, first download the zipped annotations with

cd datasets
mkdir evaluation
cd evaluation
wget -O gt_ctw1500.zip https://cloudstor.aarnet.edu.au/plus/s/xU3yeM3GnidiSTr/download
wget -O gt_totaltext.zip https://cloudstor.aarnet.edu.au/plus/s/SFHvin8BLUM4cNd/download
wget -O gt_icdar2015.zip https://drive.google.com/file/d/1wrq_-qIyb_8dhYVlDzLZTTajQzbic82Z/view?usp=sharing
wget -O gt_vintext.zip https://drive.google.com/file/d/11lNH0uKfWJ7Wc74PGshWCOgSxgEnUPEV/view?usp=sharing
  1. Pretrain SWINTS (e.g., with Swin-Transformer backbone)
python projects/SWINTS/train_net.py \
  --num-gpus 8 \
  --config-file projects/SWINTS/configs/SWINTS-swin-pretrain.yaml
  1. Fine-tune model on the mixed real dataset
python projects/SWINTS/train_net.py \
  --num-gpus 8 \
  --config-file projects/SWINTS/configs/SWINTS-swin-mixtrain.yaml
  1. Fine-tune model
python projects/SWINTS/train_net.py \
  --num-gpus 8 \
  --config-file projects/SWINTS/configs/SWINTS-swin-finetune-totaltext.yaml
  1. Evaluate SWINTS (e.g., with Swin-Transformer backbone)
python projects/SWINTS/train_net.py \
  --config-file projects/SWINTS/configs/SWINTS-swin-finetune-totaltext.yaml \
  --eval-only MODEL.WEIGHTS ./output/model_final.pth
  1. Visualize the detection and recognition results (e.g., with ResNet50 backbone)
python demo/demo.py \
  --config-file projects/SWINTS/configs/SWINTS-swin-finetune-totaltext.yaml \
  --input input1.jpg \
  --output ./output \
  --confidence-threshold 0.4 \
  --opts MODEL.WEIGHTS ./output/model_final.pth

Example results:

Acknowlegement

Adelaidet, Detectron2, ISTR, SwinT_detectron2, Focal-Transformer and MaskTextSpotterV3.

Citation

If our paper helps your research, please cite it in your publications:

@article{huang2022swints,
  title = {SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text Recognition},
  author = {Mingxin Huang and YuLiang liu and Zhenghao Peng and Chongyu Liu and Dahua Lin and Shenggao Zhu and Nicholas Yuan and Kai Ding and Lianwen Jin},
  journal={arXiv preprint arXiv:2203.10209},
  year = {2022}
}

Copyright

For commercial purpose usage, please contact Dr. Lianwen Jin: [email protected]

Copyright 2019, Deep Learning and Vision Computing Lab, South China China University of Technology. http://www.dlvc-lab.net

Owner
mxin262
mxin262
Pytorch implementation for "Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets" (ECCV 2020 Spotlight)

Distribution-Balanced Loss [Paper] The implementation of our paper Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets (

Tong WU 304 Dec 22, 2022
University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN

Music-Sentiment-Transfer University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN Poster: Music Sentiment Transfer

Miles Sigel 2 Jan 24, 2022
This Deep Learning Model Predicts that from which disease you are suffering.

Deep-Learning-Project This Deep Learning Model Predicts that from which disease you are suffering. This Project Covers the Topics of Deep Learning Int

Jai Viral Doshi 0 Jan 20, 2022
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

YeongHyeon Park 7 Aug 28, 2022
Info and sample codes for "NTU RGB+D Action Recognition Dataset"

"NTU RGB+D" Action Recognition Dataset "NTU RGB+D 120" Action Recognition Dataset "NTU RGB+D" is a large-scale dataset for human action recognition. I

Amir Shahroudy 578 Dec 30, 2022
A PyTorch Lightning solution to training OpenAI's CLIP from scratch.

train-CLIP 📎 A PyTorch Lightning solution to training CLIP from scratch. Goal ⚽ Our aim is to create an easy to use Lightning implementation of OpenA

Cade Gordon 396 Dec 30, 2022
Project of 'TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement '

TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement Codes for TMM20 paper "TBEFN: A Two-branch Exposure-fusion Network for Low

KUN LU 31 Nov 06, 2022
Galaxy images labelled by morphology (shape). Aimed at ML development and teaching

Galaxy images labelled by morphology (shape). Aimed at ML debugging and teaching.

Mike Walmsley 14 Nov 28, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

dm_robotics: Libraries, tools, and tasks created and used for Robotics research at DeepMind. Package overview Package Summary Transformations Rigid bo

DeepMind 273 Jan 06, 2023
Cobalt Strike teamserver detection.

Cobalt-Strike-det Cobalt Strike teamserver detection. usage: cobaltstrike_verify.py [-l TARGETS] [-t THREADS] optional arguments: -h, --help show this

TimWhite 17 Sep 27, 2022
An Implicit Function Theorem (IFT) optimizer for bi-level optimizations

iftopt An Implicit Function Theorem (IFT) optimizer for bi-level optimizations. Requirements Python 3.7+ PyTorch 1.x Installation $ pip install git+ht

The Money Shredder Lab 2 Dec 02, 2021
[ICCV 2021] Released code for Causal Attention for Unbiased Visual Recognition

CaaM This repo contains the codes of training our CaaM on NICO/ImageNet9 dataset. Due to my recent limited bandwidth, this codebase is still messy, wh

Wang Tan 66 Dec 31, 2022
Official PyTorch implementation of "BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation" (NeurIPS 2021)

BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation Official PyTorch implementation of the NeurIPS 2021 paper Mingcong Liu, Qiang

onion 462 Dec 29, 2022
MultiTaskLearning - Multi Task Learning for 3D segmentation

Multi Task Learning for 3D segmentation Perception stack of an Autonomous Drivin

2 Sep 22, 2022
A keras-based real-time model for medical image segmentation (CFPNet-M)

CFPNet-M: A Light-Weight Encoder-Decoder Based Network for Multimodal Biomedical Image Real-Time Segmentation This repository contains the implementat

268 Nov 27, 2022
ICCV2021 Papers with Code

ICCV2021 Papers with Code

Amusi 1.4k Jan 02, 2023
Code for paper 'Hand-Object Contact Consistency Reasoning for Human Grasps Generation' at ICCV 2021

GraspTTA Hand-Object Contact Consistency Reasoning for Human Grasps Generation (ICCV 2021). Project Page with Videos Demo Quick Results Visualization

Hanwen Jiang 47 Dec 09, 2022
Iowa Project - My second project done at General Assembly, focused on feature engineering and understanding Linear Regression as a concept

Project 2 - Ames Housing Data and Kaggle Challenge PROBLEM STATEMENT Inferring or Predicting? What's more valuable for a housing model? When creating

Adam Muhammad Klesc 1 Jan 03, 2022
Pytorch implementation of Zero-DCE++

Zero-DCE++ You can find more details here: https://li-chongyi.github.io/Proj_Zero-DCE++.html. You can find the details of our CVPR version: https://li

Chongyi Li 157 Dec 23, 2022