Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Overview

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

This is the code for implementing the MADDPG algorithm presented in the paper: Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning. It is configured to be run in conjunction with environments from the (https://github.com/qian18long/epciclr2020/tree/master/mpe_local). We show our gif results here (https://sites.google.com/view/epciclr2020/). Note: this codebase has been restructured since the original paper, and the results may vary from those reported in the paper.

Installation

  • Install tensorflow 1.13.1
pip install tensorflow==1.13.1
  • Install OpenAI gym
pip install gym==0.13.0
  • Install other dependencies
pip install joblib imageio

Case study: Multi-Agent Particle Environments

We demonstrate here how the code can be used in conjunction with the(https://github.com/qian18long/epciclr2020/tree/master/mpe_local). It is based on(https://github.com/openai/multiagent-particle-envs)

Quick start

  • See train_grassland_epc.sh, train_adversarial_epc.sh and train_food_collect_epc.sh for the EPC algorithm for scenario grassland, adversarial and food_collect in the example setting presented in our paper.

Command-line options

Environment options

  • --scenario: defines which environment in the MPE is to be used (default: "grassland")

  • --map-size: The size of the environment. 1 if normal and 2 otherwise. (default: "normal")

  • --sight: The agent's visibility radius. (default: 100)

  • --alpha: Reward shared weight. (default: 0.0)

  • --max-episode-len maximum length of each episode for the environment (default: 25)

  • --num-episodes total number of training episodes (default: 200000)

  • --num-good: number of good agents in the scenario (default: 2)

  • --num-adversaries: number of adversaries in the environment (default: 2)

  • --num-food: number of food(resources) in the scenario (default: 4)

  • --good-policy: algorithm used for the 'good' (non adversary) policies in the environment (default: "maddpg"; options: {"att-maddpg", "maddpg", "PC", "mean-field"})

  • --adv-policy: algorithm used for the adversary policies in the environment (default: "maddpg"; options: {"att-maddpg", "maddpg", "PC", "mean-field"})

Core training parameters

  • --lr: learning rate (default: 1e-2)

  • --gamma: discount factor (default: 0.95)

  • --batch-size: batch size (default: 1024)

  • --num-units: number of units in the MLP (default: 64)

  • --good-num-units: number of units in the MLP of good agents, if not providing it will be num-units.

  • --adv-num-units: number of units in the MLP of adversarial agents, if not providing it will be num-units.

  • --n_cpu_per_agent: cpu usage per agent (default: 1)

  • --good-share-weights: good agents share weights of the agents encoder within the model.

  • --adv-share-weights: adversarial agents share weights of the agents encoder within the model.

  • --use-gpu: Use GPU for training (default: False)

  • --n-envs: number of environments instances in parallelization

Checkpointing

  • --save-dir: directory where intermediate training results and model will be saved (default: "/test/")

  • --save-rate: model is saved every time this number of episodes has been completed (default: 1000)

  • --load-dir: directory where training state and model are loaded from (default: "test")

Evaluation

  • --restore: restores previous training state stored in load-dir (or in save-dir if no load-dir has been provided), and continues training (default: False)

  • --display: displays to the screen the trained policy stored in load-dir (or in save-dir if no load-dir has been provided), but does not continue training (default: False)

  • --save-gif-data: Save the gif examples to the save-dir (default: False)

  • --render-gif: Render the gif in the load-dir (default: False)

EPC options

  • --initial-population: initial population size in the first stage

  • --num-selection: size of the population selected for reproduction

  • --num-stages: number of stages

  • --stage-num-episodes: number of training episodes in each stage

  • --stage-n-envs: number of environments instances in parallelization in each stage

  • --test-num-episodes: number of episodes for the competing

Example scripts

  • .maddpg_o/experiments/train_normal.py: apply the train_helpers.py for MADDPG, Att-MADDPG and mean-field training
  • .maddpg_o/experiments/train_x2.py: apply a single step doubling training

  • .maddpg_o/experiments/train_mix_match.py: mix match of the good agents in --sheep-init-load-dirs and adversarial agents in '--wolf-init-load-dirs' for model agents evaluation.

  • .maddpg_o/experiments/train_epc.py: train the scheduled EPC algorithm.

  • .maddpg_o/experiments/compete.py: evaluate different models by competition

Paper citation

@inproceedings{epciclr2020,
  author = {Qian Long and Zihan Zhou and Abhinav Gupta and Fei Fang and Yi Wu and Xiaolong Wang},
  title = {Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning},
  booktitle = {International Conference on Learning Representations},
  year = {2020}
}
Trading Strategies for Freqtrade

Freqtrade Strategies Strategies for Freqtrade, developed primarily in a partnership between @werkkrew and @JimmyNixx from the Freqtrade Discord. Use t

Bryan Chain 242 Jan 07, 2023
Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Gabriel Huang 70 Jan 07, 2023
Source code for paper "ATP: AMRize Than Parse! Enhancing AMR Parsing with PseudoAMRs" @NAACL-2022

ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs Hi this is the source code of our paper "ATP: AMRize Then Parse! Enhancing AMR Parsing w

Chen Liang 13 Nov 23, 2022
Simple (but Strong) Baselines for POMDPs

Recurrent Model-Free RL is a Strong Baseline for Many POMDPs Welcome to the POMDP world! This repo provides some simple baselines for POMDPs, specific

Tianwei V. Ni 172 Dec 29, 2022
A scikit-learn-compatible module for estimating prediction intervals.

|Anaconda|_ MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals using your favourite sklearn

SimAI 584 Dec 27, 2022
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022
Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and Tracking of Object Poses in 3D Space"

Sparse Steerable Convolution (SS-Conv) Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and

25 Dec 21, 2022
Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree

This is a Python implementation of cover trees, a data structure for finding nearest neighbors in a general metric space (e.g., a 3D box with periodic

Patrick Varilly 28 Nov 25, 2022
Streamlit App For Product Analysis - Streamlit App For Product Analysis

Streamlit_App_For_Product_Analysis Здравствуйте! Перед вами дашборд, позволяющий

Grigory Sirotkin 1 Jan 10, 2022
Аналитика доходности инвестиционного портфеля в Тинькофф брокере

Аналитика доходности инвестиционного портфеля Тиньков Видео на YouTube Для работы скрипта нужно установить три переменных окружения: export TINKOFF_TO

Alexey Goloburdin 64 Dec 17, 2022
Implementation detail for paper "Multi-level colonoscopy malignant tissue detection with adversarial CAC-UNet"

Multi-level-colonoscopy-malignant-tissue-detection-with-adversarial-CAC-UNet Implementation detail for our paper "Multi-level colonoscopy malignant ti

CVSM Group - email: <a href=[email protected]"> 84 Nov 22, 2022
Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks.

Self Supervised Learning with Fastai Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks. Install pip install self-

Kerem Turgutlu 276 Dec 23, 2022
Load What You Need: Smaller Multilingual Transformers for Pytorch and TensorFlow 2.0.

Smaller Multilingual Transformers This repository shares smaller versions of multilingual transformers that keep the same representations offered by t

Geotrend 79 Dec 28, 2022
Official implementation of "MetaSDF: Meta-learning Signed Distance Functions"

MetaSDF: Meta-learning Signed Distance Functions Project Page | Paper | Data Vincent Sitzmann*, Eric Ryan Chan*, Richard Tucker, Noah Snavely Gordon W

Vincent Sitzmann 100 Jan 01, 2023
Tensorflow/Keras Plug-N-Play Deep Learning Models Compilation

DeepBay This project was created with the objective of compile Machine Learning Architectures created using Tensorflow or Keras. The architectures mus

Whitman Bohorquez 4 Sep 26, 2022
[ICCV 2021] Relaxed Transformer Decoders for Direct Action Proposal Generation

RTD-Net (ICCV 2021) This repo holds the codes of paper: "Relaxed Transformer Decoders for Direct Action Proposal Generation", accepted in ICCV 2021. N

Multimedia Computing Group, Nanjing University 80 Nov 30, 2022
Tensorflow implementation of Swin Transformer model.

Swin Transformer (Tensorflow) Tensorflow reimplementation of Swin Transformer model. Based on Official Pytorch implementation. Requirements tensorflow

167 Jan 08, 2023
Miscellaneous and lightweight network tools

Network Tools Collection of miscellaneous and lightweight network tools to simplify daily operations, administration, and troubleshooting of networks.

Nicholas Russo 22 Mar 22, 2022
TrackFormer: Multi-Object Tracking with Transformers

TrackFormer: Multi-Object Tracking with Transformers This repository provides the official implementation of the TrackFormer: Multi-Object Tracking wi

Tim Meinhardt 321 Dec 29, 2022
IhoneyBakFileScan Modify - 批量网站备份文件扫描器,增加文件规则,优化内存占用

ihoneyBakFileScan_Modify 批量网站备份文件泄露扫描工具 2022.2.8 添加、修改内容 增加备份文件fuzz规则 修改备份文件大小判断

VMsec 220 Jan 05, 2023