Implementation of the Angular Spectrum method in Python to simulate Diffraction Patterns

Overview

Diffraction Simulations - Angular Spectrum Method

Implementation of the Angular Spectrum method in Python to simulate Diffraction Patterns with arbitrary apertures. You can use it for simulating both monochromatic and polychromatic light also with arbitrary spectrums.

How the method and the simulator work is described in this Article. Take a look to the Youtube video to see the animated simulations!

animation

Installation

  1. Clone repository
  2. Install requirements via pip install -r requirements.txt

Examples

To perform the simulations, just run from the folder proyect in the command prompt the corresponding Python scripts:

python hexagon_monochromatic.py

N|Solid

python hexagon_polychromatic.py

N|Solid

python rectangular_grating_small.py

N|Solid

python rectangular_grating.py

N|Solid

python circular_rings.py

N|Solid

python text.py

N|Solid

Comments
  • Possibility of Phase-Object Diffraction Simulation

    Possibility of Phase-Object Diffraction Simulation

    Hi! Thanks for your really amazing work! I am a newbie in optics and I am wondering whether it's possible to produce diffraction like image And here is the light field with the description from the paper

    A laser beam emitted from a He–Ne laser at a wavelength of 632.8 nm (NEC Electronics Inc. GLG5002) was first spatially filtered by a pinhole with an aperture of 10 µm and then collimated by a lens with a focal length of f= 200mm. The plane wave was guided to illuminate a phase object, producing intensity images as shown in Fig. 5b. To acquire the diffraction pattern, we placed the camera (SensiCam EM, pixel pitch: 8 µm) at a distance d= 22.3mm from the phase object.

    image

    Appreciate it a lot if you could help me about this:) Wish you a good day!

    opened by FishWoWater 8
  • Is it possible to modulate the initial MonochromaticField?

    Is it possible to modulate the initial MonochromaticField?

    Thank you for creating such a useful tool. In my recent research, I need a plane wave only whose intensity is modulated, but I can't achieve this effect with MonochromaticField and Could you tell me how to implement this function?

    opened by Windaway 5
  • plot_intensity() and plot_colors() show different results

    plot_intensity() and plot_colors() show different results

    Hi,

    firstly I would like to thank you for this nice package. However, I am experiencing some trouble with the visualisation functions. Below, you can find the example "circular_aperture_lens.py" with two added lines of code. It seems to me that the functions plot_intensity() and plot_colors() show different results, which is somehow confusing. Is this a bug or did I use the functions not as intended?

    import diffractsim
    diffractsim.set_backend("CPU") #Change the string to "CUDA" to use GPU acceleration
    
    from diffractsim import MonochromaticField, nm, mm, cm, CircularAperture, Lens
    
    F = MonochromaticField(
        wavelength = 543 * nm, extent_x=13. * mm, extent_y=13. * mm, Nx=2000, Ny=2000, intensity =0.01
    )
    
    F.add(CircularAperture(radius = 0.7*mm))
    F.propagate(100*cm)
    F.add(Lens(f = 100*cm)) # Just remove this command to see the pattern without lens
    F.propagate(100*cm)
    
    rgb = F.get_colors()
    F.plot_colors(rgb, xlim=[-3*mm,3*mm], ylim=[-3*mm,3*mm])
    F.plot_intensity(F.get_intensity(), xlim=[-3*mm,3*mm], ylim=[-3*mm,3*mm])
    
    opened by CakeUser321 3
  • NX and NY definition?

    NX and NY definition?

    Hi! Could you explain me what are NX and NY in MonochromaticField and PolychromaticField? What are they correlation with extent_x and extent_y visually? I would like to simulate diffraction pattern of a grating 20 cm in front of a telescope (F=11 m, D=60 cm) at its focal plane. Do you have some suggestions? Thank you in advance.

    opened by irfanimaduddin 3
  • How should handle the circular convolution and the linear convolution in the angular spectrum method?

    How should handle the circular convolution and the linear convolution in the angular spectrum method?

    Hi, there. Firstly, thank you for your great job for the fresh men like me! It's really helpful! So here is the thing, I read the angular spectrum method part to implement the wave propagation, and I noticed you just used two fft2s and ifft. So this is a circular convolution, right? I am wondering what should we choose between circular convolution and linear convolution? Thanks in advance!

    opened by nophy 2
  • Running rectangular slit with CPU

    Running rectangular slit with CPU

    Running rectangular slit with CPU gives me the following error- AttributeError: 'RectangularSlit' object has no attribute 'xx'

    rectangular_slit.zip

    [I have attached the code I'm running] complete traceback-

    Traceback (most recent call last):

    File "", line 1, in runfile('C:/Users/acer/Desktop/python-sonu/programms/rectangular_slit.py', wdir='C:/Users/acer/Desktop/python-sonu/programms')

    File "C:\Users\acer\Anaconda3\lib\site-packages\spyder\utils\site\sitecustomize.py", line 705, in runfile execfile(filename, namespace)

    File "C:\Users\acer\Anaconda3\lib\site-packages\spyder\utils\site\sitecustomize.py", line 102, in execfile exec(compile(f.read(), filename, 'exec'), namespace)

    File "C:/Users/acer/Desktop/python-sonu/programms/rectangular_slit.py", line 15, in F.add(RectangularSlit(width= 1mm, height=5cm,x0=0,y0=0))

    File "C:\Users\acer\Anaconda3\lib\site-packages\diffractsim\monochromatic_simulator.py", line 51, in add self.E = optical_element.get_E(self.E, self.xx, self.yy, self.λ)

    File "C:\Users\acer\Anaconda3\lib\site-packages\diffractsim\diffractive_elements\diffractive_element.py", line 18, in get_E return E*self.get_transmittance(xx, yy, λ)

    File "C:\Users\acer\Anaconda3\lib\site-packages\diffractsim\diffractive_elements\rectangular_slit.py", line 25, in get_transmittance bd.ones_like(self.xx), bd.zeros_like(self.xx))

    AttributeError: 'RectangularSlit' object has no attribute 'xx rectangular_slit.zip '

    opened by Abhisek1300 2
  • How to simulate Fourier Transform at the Focal Plane (when input_distance = f)

    How to simulate Fourier Transform at the Focal Plane (when input_distance = f)

    Hi, Thank you for your fantastic work.

    I have implemented the lens system as given in this script. I also followed your article as well.

    When I set up input_distance = output_distance = focal_length= 25cm, Ideally I should get the Fourier Transform at the output. But the implementation does not give that. Could you please guide me on how I can get that?

    Input field (intensity) image

    What I got from the simulation (I checked for multiple scale factors in scale_propagation function (in this script). Below are images for scale_factor= 30) image

    What should I get (Fourier Transform) image image

    opened by udithhaputhanthri 1
  • Two visualization questions

    Two visualization questions

    I have two questions about visualization which are:

    1. I would like to get full longitudinal profile plot for a big lens (in 60 cm wide) but the plot_longitudinal_profile_colors function trimmed it on y axis. How could I deal with this kind of issue?
    2. Is there any code available to create an animation of intensity plots?

    Thanks, Irfan

    opened by irfanimaduddin 1
  • Rectangular Slit with CUDA

    Rectangular Slit with CUDA

    Running a rectungular slit with CUDA backend gives me the following error:

    Traceback (most recent call last): File "C:/Users/ethan/Documents/PycharmProjects/diffraction/examples/circular_aperture_lens.py", line 27, in F.add_rectangular_slit(x0=0, y0=0, width=1.5 * mm, height=1.5 * mm) File "C:\Users\ethan\Documents\PycharmProjects\diffraction\venv\lib\site-packages\diffractsim\monochromatic_simulator.py", line 68, in add_rectangular_slit [bd.ones(self.E.shape), bd.zeros(self.E.shape)], File "C:\Users\ethan\Documents\PycharmProjects\diffraction\venv\lib\site-packages\cupy_indexing\indexing.py", line 199, in select if cond.dtype.type is not cupy.bool_: AttributeError: 'bool' object has no attribute 'dtype'

    Can be fixed by modifying assignment if the 't' variable in the 'add_rectangular_slit' function.

    t = bd.select(
                [
                    ((self.xx > (x0 - width / 2)) & (self.xx < (x0 + width / 2)))
                    & ((self.yy > (y0 - height / 2)) & (self.yy < (y0 + height / 2))),
                    bd.full(self.E.shape, True, dtype=bool)
                ],
                [bd.ones(self.E.shape), bd.zeros(self.E.shape)],
            )
    
    opened by ethan-becker-fathom 1
  • Corrected errors in input+output plane coordinate systems and added lens example

    Corrected errors in input+output plane coordinate systems and added lens example

    There is a mistake in the coordinate system definitions of the current version which means that for example a lens does not focus exactly on the optical axis. If you try and run the supplied example in an old version of the code you would get:

    old_image old_PSF

    And with the new version you would instead get the following on-axis responses:

    new_image new_PSF

    P.S. I have also updated the calculation of kz in order to include non-propagating modes. If not, the supplied example will fail

    P.P.S. Changes only made to the monochromatic simulator

    opened by villadsegede 1
  • Refactor user and developer experience

    Refactor user and developer experience

    Hello @rafael-fuente, I really enjoyed your simulations! I am creating a pull request with features that will allow for easier user and developer experience when working with your project.

    opened by irahorecka 1
  • Code documentation

    Code documentation

    The description of the functions are clear but I had a hard time understanding how they worked. If you want, I can help you create even better documentation in code.

    opened by GuilhermeMonteiroPeixoto 0
  • Lens aberration function

    Lens aberration function

    I noticed that the lens aberration attribute was not being referenced correctly (missing self.). I also added the missing wavelength dependence and a simple example showing how it can be used.

    opened by danielbrown2 0
  • ApertureFromImage() seems to always assume the image is in linear sRGB

    ApertureFromImage() seems to always assume the image is in linear sRGB

    Hi,

    I think this tool you made is awesome, and I really enjoy playing with it. My only "complaint" is that when using a grayscale image as an aperture, the result at a dstance of 0 look different from the original image. I'm guessing that it's because F.get_colors() correctly converts the output image to sRGB, but when loading the aperture image with ApertureFromImage(), the image isn't correctly converted to linear.

    Editing the grayscale conversion in aperture_from_image.py this way seems to fix it: t = 0.2990 * np.power(imgRGB[:, :, 0],2.2) + 0.5870 * np.power(imgRGB[:, :, 1],2.2) + 0.1140 * np.power(imgRGB[:, :, 2],2.2)

    opened by stduhpf 0
  • Request for CPU multi core processing support

    Request for CPU multi core processing support

    First, like your work, and I would like to make it better.

    I would be nice to have support for multi-core processing. I know that numpy runs fast on the cpu but cannot use more then one core. Also not all computers can use well the gpu and installing and using cupy is not straight foreword and easy as numpy.

    On the side, there are module that able to use multi core for mathematical operation like numba. In addition, its installation is simple and it is easy to use.

    I would like to help with that and it seems that the change for the code would not be so big. Thanks

    opened by eitan-davis 0
Releases(v2.2.3)
  • v2.2.3(Feb 18, 2022)

    Diffractsim is a flexible and easy-to-use Python diffraction simulator that focuses on visualizing physical optics phenomena.

    The simulator provides scalar diffraction techniques for full-optical path propagation, an interface for simulation setup, and several plotting options, counting with CIE Color matching functions for accurate color reproduction.

    It supports lenses, phase hologram generation, and GPU acceleration.

    Source code(tar.gz)
    Source code(zip)
    diffractsim-2.2.3.zip(1.90 MB)
Owner
Rafael de la Fuente
Rafael de la Fuente
To check my COVID-19 vaccine appointment, I wrote an infinite loop that sends me a Whatsapp message hourly using Twilio and Selenium. It works on my Raspberry Pi computer.

COVID-19_vaccine_appointment To check my COVID-19 vaccine appointment, I wrote an infinite loop that sends me a Whatsapp message hourly using Twilio a

Ayyuce Demirbas 24 Dec 17, 2022
A simple script written using symbolic python that takes as input a desired metric and automatically calculates and outputs the Christoffel Pseudo-Tensor, Riemann Curvature Tensor, Ricci Tensor, Scalar Curvature and the Kretschmann Scalar

A simple script written using symbolic python that takes as input a desired metric and automatically calculates and outputs the Christoffel Pseudo-Tensor, Riemann Curvature Tensor, Ricci Tensor, Scal

2 Nov 27, 2021
Batch obfuscator based on the obfuscation method used by the trick bot launcher

Batch obfuscator based on the obfuscation method used by the trick bot launcher

SlizBinksman 2 Mar 19, 2022
A collection of existing KGQA datasets in the form of the huggingface datasets library, aiming to provide an easy-to-use access to them.

KGQA Datasets Brief Introduction This repository is a collection of existing KGQA datasets in the form of the huggingface datasets library, aiming to

Semantic Systems research group 21 Jan 06, 2023
Strawberry Benchmark With Python

Strawberry benchmarks these benchmarks have been made to compare the performance of dataloaders and joined database queries. How to use You can run th

Doctor 4 Feb 23, 2022
Osintgram by Datalux but i fixed some errors i found and made it look cleaner

OSINTgram-V2 OSINTgram-V2 is made from Osintgram which is made by Datalux originally but i took the script and fixed some errors i found and made the

2 Feb 02, 2022
the classic version Of torrentleechx #Unmaintained #Archived

TorrentleechX-Classic Old Modified Version Repo #Unmaintained #Archived for support join here working example group Leech Here For Any Issues/Imroveme

XcodersHub 18 Jan 30, 2022
A Python application that simulates the rolling of a dice, randomly picking one of the 6 faces and then displaying it.

dice-roller-app This is an application developed in Python that shuffles between the 6 faces of a dice, using buttons to shuffle and close the applica

Paddy Costelloe 0 Jul 20, 2021
Transform a Google Drive server into a VFX pipeline ready server

Google Drive VFX Server VFX Pipeline About The Project Quick tutorial to setup a Google Drive Server for multiple machines access, and VFX Pipeline on

Valentin Beaumont 17 Jun 27, 2022
Minutaria is a basic educational Python timer used to learn python and software testing libraries.

minutaria minutaria is a basic educational Python timer. The project is educational, it aims to teach myself programming, python programming, python's

1 Jul 16, 2021
Load dependent libraries dynamically.

dypend dypend Load dependent libraries dynamically. A few days ago, I encountered many users feedback in an open source project. The Problem is they c

Louis 5 Mar 02, 2022
A cheat sheet for streamlit

Streamlit Cheat Sheet App to summarise streamlit docs v1.0.0 There is also an accompanying png and pdf version https://github.com/daniellewisDL/stream

Daniel Lewis 221 Jan 04, 2023
Telegram bot to upload media to telegra.ph

Telegraph @StarkTelegraphBot A star ⭐ from you means a lot to us ! Telegram bot to upload media to telegra.ph Usage Deploy to Heroku Tap on above butt

Stark Bots 24 Dec 29, 2022
Open-source library for analyzing the results produced by ABINIT

Package Continuous Integration Documentation About AbiPy is a python library to analyze the results produced by Abinit, an open-source program for the

ABINIT 91 Dec 09, 2022
Pokemon sword replay capture

pokemon-sword-replay-capture This is an old version (March 2020) pokemon-sword-replay-capture-mar-2020-version of my Pokemon Replay Capture software.

11 May 15, 2022
A simple and efficient computing package for Genshin Impact gacha analysis

GGanalysisLite计算包 这个版本的计算包追求计算速度,而GGanalysis包有着更多计算功能。 GGanalysisLite包通过卷积计算分布列,通过FFT和快速幂加速卷积计算。 测试玩家得到的排名值rank的数学意义是:与抽了同样数量五星的其他玩家相比,测试玩家花费的抽数大于等于比例

一棵平衡树 34 Nov 26, 2022
Python Control Systems Library

The Python Control Systems Library is a Python module that implements basic operations for analysis and design of feedback control systems.

Control Systems Library for Python 1.3k Jan 06, 2023
An easy-to-learn, dynamic, interpreted, procedural programming language

Gen Programming Language WARNING!! THIS LANGUAGE IS IN DEVELOPMENT. ANYTHING CAN CHANGE AT ANY MOMENT. Gen is a dynamic, interpreted, procedural progr

Gen Programming Language 7 Oct 17, 2022
Manjaro CN Repository

Manjaro CN Repository Automatically built packages based on archlinuxcn/repo and manjarocn/docker. Install Add manjarocn to /etc/pacman.conf: Please m

Manjaro CN 28 Jun 26, 2022
A simple 3D rigid body simulation written in python

pyRigidBody3d A simple 3D rigid body simulation written in python

30 Oct 07, 2022