Code for "Multi-Time Attention Networks for Irregularly Sampled Time Series", ICLR 2021.

Overview

Multi-Time Attention Networks (mTANs)

This repository contains the PyTorch implementation for the paper Multi-Time Attention Networks for Irregularly Sampled Time Series by Satya Narayan Shukla and Benjamin M. Marlin. This work has been accepted at the International Conference on Learning Representations, 2021.

Requirements

The code requires Python 3.7 or later. The file requirements.txt contains the full list of required Python modules.

pip3 install -r requirements.txt

Training and Evaluation

  1. Interpolation Task on Toy Dataset
python3 tan_interpolation.py --niters 5000 --lr 0.0001 --batch-size 128 --rec-hidden 32 --latent-dim 1 --length 20 --enc mtan_rnn --dec mtan_rnn --n 1000  --gen-hidden 50 --save 1 --k-iwae 5 --std 0.01 --norm --learn-emb --kl --seed 0 --num-ref-points 20 --dataset toy
  1. Interpolation Task on PhysioNet Dataset
python3 tan_interpolation.py --niters 500 --lr 0.001 --batch-size 32 --rec-hidden 64 --latent-dim 16 --quantization 0.016  --enc mtan_rnn --dec mtan_rnn --n 8000  --gen-hidden 50 --save 1 --k-iwae 5 --std 0.01 --norm --learn-emb --kl --seed 0 --num-ref-points 64 --dataset physionet --sample-tp 0.9
  1. Classification Task on PhysioNet Dataset (mTAND-Full)
python3 tan_classification.py --alpha 100 --niters 300 --lr 0.0001 --batch-size 50 --rec-hidden 256 --gen-hidden 50 --latent-dim 20 --enc mtan_rnn --dec mtan_rnn --n 8000 --quantization 0.016 --save 1 --classif --norm --kl --learn-emb --k-iwae 1 --dataset physionet
  1. Classification Task on PhysioNet Dataset (mTAND-Enc)
python3 tanenc_classification.py --niters 200 --lr 0.0001 --batch-size 128 --rec-hidden 128 --enc mtan_enc --n 8000 --quantization 0.016 --save 1 --classif --num-heads 1 --learn-emb --dataset physionet --seed 0
  1. Classification Task on MIMIC-III Dataset (mTAND-Full)
python3 tan_classification.py --alpha 5 --niters 300 --lr 0.0001 --batch-size 128 --rec-hidden 256 --gen-hidden 50 --latent-dim 128 --enc mtan_rnn --dec mtan_rnn   --save 1 --classif --norm --learn-emb --k-iwae 1 --dataset mimiciii

For MIMIC-III Dataset, first you need to have an access to the dataset which can be requested here. We follow the data extraction process described here: https://github.com/mlds-lab/interp-net.

  1. Classification Task on MIMIC-III Dataset (mTAND-Enc)
python3 tanenc_classification.py --niters 200 --lr 0.0001 --batch-size 256 --rec-hidden 256 --enc mtan_enc  --quantization 0.016 --save 1 --classif --num-heads 1 --learn-emb --dataset mimiciii --seed 0
  1. Classification Task on Human Activity Dataset (mTAND-Enc)
python3 tanenc_classification.py --niters 1000 --lr 0.001 --batch-size 256 --rec-hidden 512 --enc mtan_enc_activity  --quantization 0.016 --save 1 --classif --num-heads 1 --learn-emb --dataset activity --seed 0 --classify-pertp

Interpolation Results

Interpolation performance on PhysioNet with varying percent of observed time points:

Classification Results

Classification performance on PhysioNet, MIMIC-III and Human activity dataset, and time per epoch in minutes for all the methods on PhysioNet.

Reference

@inproceedings{
shukla2021multitime,
title={Multi-Time Attention Networks for Irregularly Sampled Time Series},
author={Satya Narayan Shukla and Benjamin Marlin},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=4c0J6lwQ4_}
}
Owner
The Laboratory for Robust and Efficient Machine Learning
The Laboratory for Robust and Efficient Machine Learning
Global-Local Attention for Emotion Recognition

Global-Local Attention for Emotion Recognition Requirements Python 3 Install tensorflow (or tensorflow-gpu) = 2.0.0 Install some other packages pip i

Minh Nhat Le 15 Apr 21, 2022
Code for our TKDE paper "Understanding WeChat User Preferences and “Wow” Diffusion"

wechat-wow-analysis Understanding WeChat User Preferences and “Wow” Diffusion. Fanjin Zhang, Jie Tang, Xueyi Liu, Zhenyu Hou, Yuxiao Dong, Jing Zhang,

18 Sep 16, 2022
Adabelief-Optimizer - Repository for NeurIPS 2020 Spotlight "AdaBelief Optimizer: Adapting stepsizes by the belief in observed gradients"

AdaBelief Optimizer NeurIPS 2020 Spotlight, trains fast as Adam, generalizes well as SGD, and is stable to train GANs. Release of package We have rele

Juntang Zhuang 998 Dec 29, 2022
Implementation of popular bandit algorithms in batch environments.

batch-bandits Implementation of popular bandit algorithms in batch environments. Source code to our paper "The Impact of Batch Learning in Stochastic

Danil Provodin 2 Sep 11, 2022
根据midi文件演奏“风物之诗琴”的脚本 "Windsong Lyre" auto play

Genshin-lyre-auto-play 简体中文 | English 简介 根据midi文件演奏“风物之诗琴”的脚本。由Python驱动,在此承诺, ⚠️ 项目内绝不含任何能够引起安全问题的代码。 前排提示:所有键盘在动但是原神没反应的都是因为没有管理员权限,双击run.bat或者以管理员模式

御坂17032号 386 Jan 01, 2023
Collapse by Conditioning: Training Class-conditional GANs with Limited Data

Collapse by Conditioning: Training Class-conditional GANs with Limited Data Moha

Mohamad Shahbazi 33 Dec 06, 2022
RoMa: A lightweight library to deal with 3D rotations in PyTorch.

RoMa: A lightweight library to deal with 3D rotations in PyTorch. RoMa (which stands for Rotation Manipulation) provides differentiable mappings betwe

NAVER 90 Dec 27, 2022
Pytorch implementation of the paper: "A Unified Framework for Separating Superimposed Images", in CVPR 2020.

Deep Adversarial Decomposition PDF | Supp | 1min-DemoVideo Pytorch implementation of the paper: "Deep Adversarial Decomposition: A Unified Framework f

Zhengxia Zou 72 Dec 18, 2022
Deep Ensemble Learning with Jet-Like architecture

Ransomware analysis using DEL with jet-like architecture comprising two CNN wings, a sparse AE tail, a non-linear PCA to produce a diverse feature space, and an MLP nose

Ahsen Nazir 2 Feb 06, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
Resources for the "Evaluating the Factual Consistency of Abstractive Text Summarization" paper

Evaluating the Factual Consistency of Abstractive Text Summarization Authors: Wojciech Kryściński, Bryan McCann, Caiming Xiong, and Richard Socher Int

Salesforce 165 Dec 21, 2022
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
Self-supervised Multi-modal Hybrid Fusion Network for Brain Tumor Segmentation

JBHI-Pytorch This repository contains a reference implementation of the algorithms described in our paper "Self-supervised Multi-modal Hybrid Fusion N

FeiyiFANG 5 Dec 13, 2021
Help you understand Manual and w/ Clutch point while driving.

简体中文 forza_auto_gear forza_auto_gear is a tool for Forza Horizon 5. It will help us understand the best gear shift point using Manual or w/ Clutch in

15 Oct 08, 2022
STEM: An approach to Multi-source Domain Adaptation with Guarantees

STEM: An approach to Multi-source Domain Adaptation with Guarantees Introduction This is the official implementation of ``STEM: An approach to Multi-s

5 Dec 19, 2022
Voice control for Garry's Mod

WIP: Talonvoice GMod integrations Very work in progress voice control demo for Garry's Mod. HOWTO Install https://talonvoice.com/ Press https://i.imgu

Meta Construct 5 Nov 15, 2022
Fewshot-face-translation-GAN - Generative adversarial networks integrating modules from FUNIT and SPADE for face-swapping.

Few-shot face translation A GAN based approach for one model to swap them all. The table below shows our priliminary face-swapping results requiring o

768 Dec 24, 2022
PyTorch implementation of a Real-ESRGAN model trained on custom dataset

Real-ESRGAN PyTorch implementation of a Real-ESRGAN model trained on custom dataset. This model shows better results on faces compared to the original

Sber AI 160 Jan 04, 2023
Teaching end to end workflow of deep learning

Deep-Education This repository is now available for public use for teaching end to end workflow of deep learning. This implies that learners/researche

Data Lab at College of William and Mary 2 Sep 26, 2022