Code base for the paper "Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation"

Overview

This repository contains code for the paper Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation.

Installation

Our dependencies are fully specified in Pipfile, which can be supplied to pipenv to install the environment. One failsafe approach is to install pipenv in a fresh virtual environment, then run pipenv install in this directory. Note the Pipfile specifies our Python 3.9 development environment; most experiments were run in an identical environment under Python 3.7 instead.

Difficulties with CUDA versions meant we had to manually install PyTorch and Torchvision rather than use pipenv --- the corresponding lines in Pipfile may need adjustment for your use case. Alternatively, use the list of dependencies as a guide to what to install yourself with pip, or use the full dump of our development environment in final_requirements.txt.

Datasets may not be bundled with the repository, but are expected to be found at locations specified in datasets.py, preprocessed into single PyTorch tensors of all the input and output data (generally data/<dataset>/data.pt and data/<dataset>/targets.pt).

Configuration

Training code is controlled with YAML configuration files, as per the examples in configs/. Generally one file is required to specify the dataset, and a second to specify the algorithm, using the obvious naming convention. Brief help text is available on the command line, but the meanings of each option should be reasonably self-explanatory.

For Ours (WD+LR), use the file Ours_LR.yaml; for Ours (WD+LR+M), use the file Ours_LR_Momentum.yaml; for Ours (WD+HDLR+M), use the file Ours_HDLR_Momentum.yaml. For Long/Medium/Full Diff-through-Opt, we provide separate configuration files for the UCI cases and the Fashion-MNIST cases.

We provide two additional helper configurations. Random_Validation.yaml copies Random.yaml, but uses the entire validation set to compute the validation loss at each logging step. This allows for stricter analysis of the best-performing run at particular time steps, for instance while constructing Random (3-batched). Random_Validation_BayesOpt.yaml only forces the use of the entire dataset for the very last validation loss computation, so that Bayesian Optimisation runs can access reliable performance metrics without adversely affecting runtime.

The configurations provided match those necessary to replicate the main experiments in our paper (in Section 4: Experiments). Other trials, such as those in the Appendix, will require these configurations to be modified as we describe in the paper. Note especially that our three short-horizon bias studies all require different modifications to the LongDiffThroughOpt_*.yaml configurations.

Running

Individual runs are commenced by executing train.py and passing the desired configuration files with the -c flag. For example, to run the default Fashion-MNIST experiments using Diff-through-Opt, use:

$ python train.py -c ./configs/fashion_mnist.yaml ./configs/DiffThroughOpt.yaml

Bayesian Optimisation runs are started in a similar way, but with a call to bayesopt.py rather than train.py.

For executing multiple runs in parallel, parallel_exec.py may be useful: modify the main function call at the bottom of the file as required, then call this file instead of train.py at the command line. The number of parallel workers may be specified by num_workers. Any configurations passed at the command line are used as a base, to which modifications may be added by override_generator. The latter should either be a function which generates one override dictionary per call (in which case num_repetitions sets the number of overrides to generate), or a function which returns a generator over configurations (in which case set num_repetitions = None). Each configuration override is run once for each of algorithms, whose configurations are read automatically from the corresponding files and should not be explicitly passed at the command line. Finally, main_function may be used to switch between parallel calls to train.py and bayesopt.py as required.

For blank-slate replications, the most useful override generators will be natural_sgd_generator, which generates a full SGD initialisation in the ranges we use, and iteration_id, which should be used with Bayesian Optimisation runs to name each parallel run using a counter. Other generators may be useful if you wish to supplement existing results with additional algorithms etc.

PennTreebank and CIFAR-10 were executed on clusters running SLURM; the corresponding subfolders contain configuration scripts for these experiments, and submit.sh handles the actual job submission.

Analysis

By default, runs are logged in Tensorboard format to the ./runs directory, where Tensorboard may be used to inspect the results. If desired, a descriptive name can be appended to a particular execution using the -n switch on the command line. Runs can optionally be written to a dedicated subfolder specified with the -g switch, and the base folder for logging can be changed with the -l switch.

If more precise analysis is desired, pass the directory containing the desired results to util.get_tags(), which will return a dictionary of the evolution of each logged scalar in the results. Note that this function uses Tensorboard calls which predate its --load_fast option, so may take tens of minutes to return.

This data dictionary can be passed to one of the more involved plotting routines in figures.py to produce specific plots. The script paper_plots.py generates all the plots we use in our paper, and may be inspected for details of any particular plot.

Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

UCL Bioinformatics Group 44 Dec 10, 2022
E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

11 Nov 08, 2022
Scaling and Benchmarking Self-Supervised Visual Representation Learning

FAIR Self-Supervision Benchmark is deprecated. Please see VISSL, a ground-up rewrite of benchmark in PyTorch. FAIR Self-Supervision Benchmark This cod

Meta Research 584 Dec 31, 2022
SNIPS: Solving Noisy Inverse Problems Stochastically

SNIPS: Solving Noisy Inverse Problems Stochastically This repo contains the official implementation for the paper SNIPS: Solving Noisy Inverse Problem

Bahjat Kawar 35 Nov 09, 2022
This is a simple backtesting framework to help you test your crypto currency trading. It includes a way to download and store historical crypto data and to execute a trading strategy.

You can use this simple crypto backtesting script to ensure your trading strategy is successful Minimal setup required and works well with static TP a

Andrei 154 Sep 12, 2022
CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes

CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes. CHERRY is based on a deep learning model, which consists of a graph convolutional encoder and a link

Kenneth Shang 12 Dec 15, 2022
This is a demo app to be used in the video streaming applications

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks MoViDNN is an Android application that can be used to ev

ATHENA Christian Doppler (CD) Laboratory 7 Jul 21, 2022
This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset

HiRID-ICU-Benchmark This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset for which the manuscript can be found here.

Biomedical Informatics at ETH Zurich 30 Dec 16, 2022
Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

7 Jun 22, 2022
Using modified BiSeNet for face parsing in PyTorch

face-parsing.PyTorch Contents Training Demo References Training Prepare training data: -- download CelebAMask-HQ dataset -- change file path in the pr

zll 1.6k Jan 08, 2023
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
Open source code for the paper of Neural Sparse Voxel Fields.

Neural Sparse Voxel Fields (NSVF) Project Page | Video | Paper | Data Photo-realistic free-viewpoint rendering of real-world scenes using classical co

Meta Research 647 Dec 27, 2022
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022
A toolset of Python programs for signal modeling and indentification via sparse semilinear autoregressors.

SPAAR Description A toolset of Python programs for signal modeling via sparse semilinear autoregressors. References Vides, F. (2021). Computing Semili

Fredy Vides 0 Oct 30, 2021
Safe Local Motion Planning with Self-Supervised Freespace Forecasting, CVPR 2021

Safe Local Motion Planning with Self-Supervised Freespace Forecasting By Peiyun Hu, Aaron Huang, John Dolan, David Held, and Deva Ramanan Citing us Yo

Peiyun Hu 90 Dec 01, 2022
Heterogeneous Deep Graph Infomax

Heterogeneous-Deep-Graph-Infomax Parameter Setting: HDGI-A: Node-level dimension: 16 Attention head: 4 Semantic-level attention vector: 8 learning rat

52 Oct 31, 2022
DIRL: Domain-Invariant Representation Learning

DIRL: Domain-Invariant Representation Learning Domain-Invariant Representation Learning (DIRL) is a novel algorithm that semantically aligns both the

Ajay Tanwani 30 Nov 07, 2022
Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models

Python scripts to detect faces using Python with the BlazeFace Tensorflow Lite models. Tested on Windows 10, Tensorflow 2.4.0 (Python 3.8).

Ibai Gorordo 46 Nov 17, 2022
This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).

Predicting Patient Outcomes with Graph Representation Learning This repository contains the code used for Predicting Patient Outcomes with Graph Repre

Emma Rocheteau 76 Dec 22, 2022