Image transformations designed for Scene Text Recognition (STR) data augmentation. Published at ICCV 2021 Workshop on Interactive Labeling and Data Augmentation for Vision.

Overview

Data Augmentation for Scene Text Recognition (ICCV 2021 Workshop)

(Pronounced as "strog")

Paper

Arxiv

Why it matters?

Scene Text Recognition (STR) requires data augmentation functions that are different from object recognition. STRAug is data augmentation designed for STR. It offers 36 data augmentation functions that are sorted into 8 groups. Each function supports 3 levels or magnitudes of severity or intensity.

Given a source image:

it can be transformed as follows:

  1. warp.py - to generate Curve, Distort, Stretch (or Elastic) deformations
Curve Distort Stretch
  1. geometry.py - to generate Perspective, Rotation, Shrink deformations
Perspective Rotation Shrink
  1. pattern.py - to create different grids: Grid, VGrid, HGrid, RectGrid, EllipseGrid
Grid VGrid HGrid RectGrid EllipseGrid
  1. blur.py - to generate synthetic blur: GaussianBlur, DefocusBlur, MotionBlur, GlassBlur, ZoomBlur
GaussianBlur DefocusBlur MotionBlur GlassBlur ZoomBlur
  1. noise.py - to add noise: GaussianNoise, ShotNoise, ImpulseNoise, SpeckleNoise
GaussianNoise ShotNoise ImpulseNoise SpeckleNoise
  1. weather.py - to simulate certain weather conditions: Fog, Snow, Frost, Rain, Shadow
Fog Snow Frost Rain Shadow
  1. camera.py - to simulate camera sensor tuning and image compression/resizing: Contrast, Brightness, JpegCompression, Pixelate
Contrast Brightness JpegCompression Pixelate
  1. process.py - all other image processing issues: Posterize, Solarize, Invert, Equalize, AutoContrast, Sharpness, Color
Posterize Solarize Invert Equalize
AutoContrast Sharpness Color

Pip install

pip3 install straug

How to use

Command line (e.g. input image is nokia.png):

>>> from straug.warp import Curve
>>> from PIL import Image
>>> img = Image.open("nokia.png")
>>> img = Curve()(img, mag=3)
>>> img.save("curved_nokia.png")

Python script (see test.py):

python3 test.py --image=<target image>

For example:

python3 test.py --image=images/telekom.png

The corrupted images are in results directory.

Reference

  • Image corruptions (eg blur, noise, camera effects, fog, frost, etc) are based on the work of Hendrycks et al.

Citation

If you find this work useful, please cite:

@inproceedings{atienza2021data,
  title={Data Augmentation for Scene Text Recognition},
  author={Atienza, Rowel},
  booktitle = {IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)},
  year={2021},
  pubstate={published},
  tppubtype={inproceedings}
}
Owner
Rowel Atienza
Rowel Atienza
Implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs".

PPO-BiHyb This is the official implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Grap

<a href=[email protected]"> 66 Nov 23, 2022
Large dataset storage format for Pytorch

H5Record Large dataset ( 100G, = 1T) storage format for Pytorch (wip) Support python 3 pip install h5record Why? Writing large dataset is still a

theblackcat102 43 Oct 22, 2022
A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

196 Jan 05, 2023
1st-in-MICCAI2020-CPM - Combined Radiology and Pathology Classification

Combined Radiology and Pathology Classification MICCAI 2020 Combined Radiology a

22 Dec 08, 2022
Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

Google Interns 50 Dec 21, 2022
A model which classifies reviews as positive or negative.

SentiMent Analysis In this project I built a model to classify movie reviews fromn the IMDB dataset of 50K reviews. WordtoVec : Neural networks only w

Rishabh Bali 2 Feb 09, 2022
AI assistant built in python.the features are it can display time,say weather,open-google,youtube,instagram.

AI assistant built in python.the features are it can display time,say weather,open-google,youtube,instagram.

AK-Shanmugananthan 1 Nov 29, 2021
CausaLM: Causal Model Explanation Through Counterfactual Language Models

CausaLM: Causal Model Explanation Through Counterfactual Language Models Authors: Amir Feder, Nadav Oved, Uri Shalit, Roi Reichart Abstract: Understan

Amir Feder 39 Jul 10, 2022
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Thomas Neumann 117 Nov 27, 2022
Official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR)

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

12 Jan 13, 2022
This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset.

FACT This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset. To cite, please use:

105 Dec 17, 2022
Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

SemCo The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

42 Nov 14, 2022
A PyTorch library and evaluation platform for end-to-end compression research

CompressAI CompressAI (compress-ay) is a PyTorch library and evaluation platform for end-to-end compression research. CompressAI currently provides: c

InterDigital 680 Jan 06, 2023
Breast-Cancer-Prediction

Breast-Cancer-Prediction Trying to predict whether the cancer is benign or malignant using REGRESSION MODELS in Python. Team Members NAME ROLL-NUMBER

Shyamdev Krishnan J 3 Feb 18, 2022
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023
[CVPR'21] MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation

MonoRUn MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. CVPR 2021. [paper] Hansheng Chen, Yuyao Huang, Wei Tian*

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 96 Dec 10, 2022
Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling

VAE with Volume-Preserving Flows This is a PyTorch implementation of two volume-preserving flows as described in the following papers: Tomczak, J. M.,

Jakub Tomczak 87 Dec 26, 2022
Colab notebook for openai/glide-text2im.

GLIDE text2im on Colab This repository provides a Colab notebook to produce images conditioned on text prompts with GLIDE [1]. Usage Run text2im.ipynb

Wok 19 Oct 19, 2022
NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

OptiPrompt This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall. We propose OptiPrompt, a simple

Princeton Natural Language Processing 150 Dec 20, 2022
Captcha-tensorflow - Image Captcha Solving Using TensorFlow and CNN Model. Accuracy 90%+

Captcha Solving Using TensorFlow Introduction Solve captcha using TensorFlow. Learn CNN and TensorFlow by a practical project. Follow the steps, run t

Jackon Yang 869 Jan 06, 2023