Data exploration done quick.

Overview

Pandas Tab

Implementation of Stata's tabulate command in Pandas for extremely easy to type one-way and two-way tabulations.

Support:

  • Python 3.7 and 3.8: Pandas >=0.23.x
  • Python 3.9: Pandas >=1.0.x

Background & Purpose

As someone who made the move from Stata to Python, one thing I noticed is that I end up doing fewer tabulations of my data when working in Pandas. I believe that the reason for this has a lot to do with API differences that make it slightly less convenient to run tabulations extremely quickly.

For example, if you want to look at values counts in column "foo", in Stata it's merely tab foo. In Pandas, it's df["foo"].value_counts(). This is over twice the amount of typing.

It's not just a brevity issue. If you want to add one more column and to go from one-way to two-way tabulation (e.g. look at "foo" and "bar" together), this isn't as simple as adding one more column:

  • df[["foo", "bar"]].value_counts().unstack() requires one additional transformation to move away from a multi-indexed series.
  • pd.crosstab(df["foo"], df["bar"]) is a totally different interface from the one-way tabulation.

Pandas Tab attempts to solve these issues by creating an interface more similar to Stata: df.tab("foo") and df.tab("foo", "bar") give you, respectively, your one-way and two-way tabulations.

Example

# using IPython integration:
# ! pip install pandas-tab[full]
# ! pandas_tab init

import pandas as pd

df = pd.DataFrame({
    "foo":  ["a", "a", "b", "a", "b", "c", "a"],
    "bar":  [4,   5,   7,   6,   7,   7,   5],
    "fizz": [12,  63,  23,  36,  21,  28,  42]
})

# One-way tabulation
df.tab("foo")

# Two-way tabulation
df.tab("foo", "bar")

# One-way with aggregation
df.tab("foo", values="fizz", aggfunc=pd.Series.mean)

# Two-way with aggregation
df.tab("foo", "bar", values="fizz", aggfunc=pd.Series.mean)

Outputs:

>> # Two-way tabulation >>> df.tab("foo", "bar") bar 4 5 6 7 foo a 1 2 1 0 b 0 0 0 2 c 0 0 0 1 >>> # One-way with aggregation >>> df.tab("foo", values="fizz", aggfunc=pd.Series.mean) mean foo a 38.25 b 22.00 c 28.00 >>> # Two-way with aggregation >>> df.tab("foo", "bar", values="fizz", aggfunc=pd.Series.mean) bar 4 5 6 7 foo a 12.0 52.5 36.0 NaN b NaN NaN NaN 22.0 c NaN NaN NaN 28.0 ">
>>> # One-way tabulation
>>> df.tab("foo")

     size  percent
foo               
a       4    57.14
b       2    28.57
c       1    14.29

>>> # Two-way tabulation
>>> df.tab("foo", "bar")

bar  4  5  6  7
foo            
a    1  2  1  0
b    0  0  0  2
c    0  0  0  1

>>> # One-way with aggregation
>>> df.tab("foo", values="fizz", aggfunc=pd.Series.mean)

      mean
foo       
a    38.25
b    22.00
c    28.00

>>> # Two-way with aggregation
>>> df.tab("foo", "bar", values="fizz", aggfunc=pd.Series.mean)

bar     4     5     6     7
foo                        
a    12.0  52.5  36.0   NaN
b     NaN   NaN   NaN  22.0
c     NaN   NaN   NaN  28.0

Setup

Full Installation (IPython / Jupyter Integration)

The full installation includes a CLI that adds a startup script to IPython:

pip install pandas-tab[full]

Then, to enable the IPython / Jupyter startup script:

pandas_tab init

You can quickly remove the startup script as well:

pandas_tab delete

More on the startup script in the section IPython / Jupyter Integration.

Simple installation:

If you don't want the startup script, you don't need the extra dependencies. Simply install with:

pip install pandas-tab

IPython / Jupyter Integration

The startup script auto-loads pandas_tab each time you load up a new IPython kernel (i.e. each time you fire up or restart your Jupyter Notebook).

You can run the startup script in your terminal with pandas_tab init.

Without the startup script:

# WITHOUT STARTUP SCRIPT
import pandas as pd
import pandas_tab

df = pd.read_csv("foo.csv")
df.tab("x", "y")

Once you install the startup script, you don't need to do import pandas_tab:

# WITH PANDAS_TAB STARTUP SCRIPT INSTALLED
import pandas as pd

df = pd.read_csv("foo.csv")
df.tab("x", "y")

The IPython startup script is convenient, but there are some downsides to using and relying on it:

  • It needs to load Pandas in the background each time the kernel starts up. For typical data science workflows, this should not be a problem, but you may not want this if your workflows ever avoid Pandas.
  • The IPython integration relies on hidden state that is environment-dependent. People collaborating with you may be unable to replicate your Jupyter notebooks if there are any df.tab()'s in there and you don't import pandas_tab manually.

For that reason, I recommend the IPython integration for solo exploratory analysis, but for collaboration you should still import pandas_tab in your notebook.

Limitations / Known Issues

  • No tests or guarantees for 3+ way cross tabulations. Both pd.crosstab and pd.Series.value_counts support multi-indexing, however this behavior is not yet tested for pandas_tab.
  • Behavior for dropna kwarg mimics pd.crosstab (drops blank columns), not pd.value_counts (include NaN/None in the index), even for one-way tabulations.
  • No automatic hook into Pandas; you must import pandas_tab in your code to register the extensions. Pandas does not currently search entry points for extensions, other than for plotting backends, so it's not clear that there's a clean way around this.
  • Does not mimic Stata's behavior of taking unambiguous abbreviations of column names, and there is no option to turn this on/off.
  • Pandas 0.x is incompatible with Numpy 1.20.x. If using Pandas 0.x, you need Numpy 1.19.x.
  • (Add more stuff here?)
Owner
W.D.
memes
W.D.
This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

1 Dec 28, 2021
COVID-19 deaths statistics around the world

COVID-19-Deaths-Dataset COVID-19 deaths statistics around the world This is a daily updated dataset of COVID-19 deaths around the world. The dataset c

Nisa Efendioğlu 4 Jul 10, 2022
A Pythonic introduction to methods for scaling your data science and machine learning work to larger datasets and larger models, using the tools and APIs you know and love from the PyData stack (such as numpy, pandas, and scikit-learn).

This tutorial's purpose is to introduce Pythonistas to methods for scaling their data science and machine learning work to larger datasets and larger models, using the tools and APIs they know and lo

Coiled 102 Nov 10, 2022
The Spark Challenge Student Check-In/Out Tracking Script

The Spark Challenge Student Check-In/Out Tracking Script This Python Script uses the Student ID Database to match the entries with the ID Card Swipe a

1 Dec 09, 2021
INFO-H515 - Big Data Scalable Analytics

INFO-H515 - Big Data Scalable Analytics Jacopo De Stefani, Giovanni Buroni, Théo Verhelst and Gianluca Bontempi - Machine Learning Group Exercise clas

Yann-Aël Le Borgne 58 Dec 11, 2022
Get mutations in cluster by querying from LAPIS API

Cluster Mutation Script Get mutations appearing within user-defined clusters. Usage Clusters are defined in the clusters dict in main.py: clusters = {

neherlab 1 Oct 22, 2021
Implementation in Python of the reliability measures such as Omega.

reliabiliPy Summary Simple implementation in Python of the [reliability](https://en.wikipedia.org/wiki/Reliability_(statistics) measures for surveys:

Rafael Valero Fernández 2 Apr 27, 2022
Project: Netflix Data Analysis and Visualization with Python

Project: Netflix Data Analysis and Visualization with Python Table of Contents General Info Installation Demo Usage and Main Functionalities Contribut

Kathrin Hälbich 2 Feb 13, 2022
PySpark bindings for H3, a hierarchical hexagonal geospatial indexing system

h3-pyspark: Uber's H3 Hexagonal Hierarchical Geospatial Indexing System in PySpark PySpark bindings for the H3 core library. For available functions,

Kevin Schaich 12 Dec 24, 2022
Bamboolib - a GUI for pandas DataFrames

Community repository of bamboolib bamboolib is joining forces with Databricks. For more information, please read our announcement. Please note that th

Tobias Krabel 863 Jan 08, 2023
General Assembly's 2015 Data Science course in Washington, DC

DAT8 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (8/18/15 - 10/29/15). Instructor: Kevin Markham (

Kevin Markham 1.6k Jan 07, 2023
Using approximate bayesian posteriors in deep nets for active learning

Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components

ElementAI 687 Dec 25, 2022
Data analysis and visualisation projects from a range of individual projects and applications

Python-Data-Analysis-and-Visualisation-Projects Data analysis and visualisation projects from a range of individual projects and applications. Python

Tom Ritman-Meer 1 Jan 25, 2022
GWpy is a collaboration-driven Python package providing tools for studying data from ground-based gravitational-wave detectors

GWpy is a collaboration-driven Python package providing tools for studying data from ground-based gravitational-wave detectors. GWpy provides a user-f

GWpy 342 Jan 07, 2023
A notebook to analyze Amazon Recommendation Review Dataset.

Amazon Recommendation Review Dataset Analyzer A notebook to analyze Amazon Recommendation Review Dataset. Features Calculates distinct user count, dis

isleki 3 Aug 22, 2022
Random dataframe and database table generator

Random database/dataframe generator Authored and maintained by Dr. Tirthajyoti Sarkar, Fremont, USA Introduction Often, beginners in SQL or data scien

Tirthajyoti Sarkar 249 Jan 08, 2023
BAyesian Model-Building Interface (Bambi) in Python.

Bambi BAyesian Model-Building Interface in Python Overview Bambi is a high-level Bayesian model-building interface written in Python. It's built on to

861 Dec 29, 2022
t-SNE and hierarchical clustering are popular methods of exploratory data analysis, particularly in biology.

tree-SNE t-SNE and hierarchical clustering are popular methods of exploratory data analysis, particularly in biology. Building on recent advances in s

Isaac Robinson 61 Nov 21, 2022
SNV calling pipeline developed explicitly to process individual or trio vcf files obtained from Illumina based pipeline (grch37/grch38).

SNV Pipeline SNV calling pipeline developed explicitly to process individual or trio vcf files obtained from Illumina based pipeline (grch37/grch38).

East Genomics 1 Nov 02, 2021
Analyse the limit order book in seconds. Zoom to tick level or get yourself an overview of the trading day.

Analyse the limit order book in seconds. Zoom to tick level or get yourself an overview of the trading day. Correlate the market activity with the Apple Keynote presentations.

2 Jan 04, 2022