This repository contains the files for running the Patchify GUI.

Overview

Repository Name >> Train-Test-Validation-Dataset-Generation

App Name >> Patchify

Description >> This app is designed for crop images and creating small patches of a large image e.g. Satellite/Aerial Images, which will then be used for training and testing Deep Learning models specifically semantic segmentation models.

Functionalities: Patchify is capable of:

  • Crop the large image into small patches based on the user-defined patch window-size and patch stride/step independently in two x and y directions.
  • Augmenting the cropped dataset to expand the size of the training dataset and make the model to improve the model performance with better generalizing for unseen samples.
  • Dividing the created dataset into different Train, Test, and Validation dataset with user defined percentages.

A picture of Patchify App is shown below:

Parameters:

  • Input Image: is the input large image need to be cropped into small patches. It can be whether raster or its label image. (The produced results will in the same format as the input image)

  • Export Folder: is the directory for saving the generated cropped patches.

  • Window Size: is the size of the cropping window which is equal to the size of the generated small patches. (X is the patch/cropped images' length in X direction and Y is their length in Y direction.)

  • Stride: is the step size of the moving window for generating the patches. It can move in different step sizes in X and Y directions.

  • Output name: is the constant part of the generated patches' name.

  • Training Percentage: is the percentage of Total generated patches goes into Training Dataset.

  • Testing Percentage: is the percentage of Total generated patches goes into Testing Dataset.

  • Validation Percentage: is the percentage of Total generated patches goes into Validation Dataset.

  • Original Image: is the original version of the cropped patch at the location of moving/sliding window.

  • Rotate 90 Degrees: is the version of original image rotated 90 degrees clockwise.

  • Rotate 180 Degrees: is the version of original image rotated 180 degrees clockwise.

  • Rotate 270 Degrees: is the version of original image rotated 270 degrees clockwise.

  • Flip Vertically: is the version of original image flipped vertically.

  • Flip Horizontally: is the version of original image flipped horizontally.

  • Flip Verticall and Horizontally: is the version of original image flipped both vertically and horizontally .

  • Start Patching: starts the patching operations based on the selected parameters.

  • Cancel: is the button for stopping the patching operations and/or closing the Patchify App.

  • Augmentation section has two buttoms. All button selects all the augmentation methods. In case a different format should be checked manually, the Custom Selection can be selected.

Important Notes:

  • if none of the Train, Testing, Validation percentages is filled, Then the Results will only produce Total cropped patches and the dataset spliting section won't run.
  • Make sure you have selected an image, the destination folder for storing and the generated patch name before pressing "Start Patchify" button.

Implementation:

patchify.py is the only file you need to run. But before make sure you have installed all the required python libraries including opencv, PyQt5. Be sure to use the latest version of pip along with python 3.7

Owner
Salar Ghaffarian
Remote Sensing and GIScientist - MSc in Geomatics Engineering - I am specialist in using Deep learning, Computer vision, and machine learning methods.
Salar Ghaffarian
Subgraph Based Learning of Contextual Embedding

SLiCE Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks Dataset details: We use four public benchmark da

Pacific Northwest National Laboratory 27 Dec 01, 2022
NeurIPS 2021 paper 'Representation Learning on Spatial Networks' code

Representation Learning on Spatial Networks This repository is the official implementation of Representation Learning on Spatial Networks. Training Ex

13 Dec 29, 2022
Pytorch implementation of SimSiam Architecture

SimSiam-pytorch A simple pytorch implementation of Exploring Simple Siamese Representation Learning which is developed by Facebook AI Research (FAIR)

Saeed Shurrab 1 Oct 20, 2021
🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

Advanced Image Manipulation Lab @ Samsung AI Center Moscow 4.7k Dec 31, 2022
State-to-Distribution (STD) Model

State-to-Distribution (STD) Model In this repository we provide exemplary code on how to construct and evaluate a state-to-distribution (STD) model fo

<a href=[email protected]"> 2 Apr 07, 2022
Hardware accelerated, batchable and differentiable optimizers in JAX.

JAXopt Installation | Examples | References Hardware accelerated (GPU/TPU), batchable and differentiable optimizers in JAX. Installation JAXopt can be

Google 621 Jan 08, 2023
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.

SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining

Cambridge Language Technology Lab 104 Dec 07, 2022
A light weight data augmentation tool for training CNNs and Viola Jones detectors

hey-daug A light weight data augmentation tool for training CNNs and Viola Jones detectors (Haar Cascades). This tool inflates your data by up to six

Jaiyam Sharma 2 Nov 23, 2019
ncnn is a high-performance neural network inference framework optimized for the mobile platform

ncnn ncnn is a high-performance neural network inference computing framework optimized for mobile platforms. ncnn is deeply considerate about deployme

Tencent 16.2k Jan 05, 2023
Code for MSc Quantitative Finance Dissertation

MSc Dissertation Code ReadMe Sector Volatility Prediction Performance Using GARCH Models and Artificial Neural Networks Curtis Nybo MSc Quantitative F

2 Dec 01, 2022
Code and datasets for the paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"

KnowPrompt Code and datasets for our paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction" Requireme

ZJUNLP 137 Dec 31, 2022
A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022)

A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022) https://arxiv.org/abs/2203.09388 Jianqi Ma, Zheto

MA Jianqi, shiki 104 Jan 05, 2023
Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes

Naive-Bayes Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes Downloading Data Set Use our Breast Cancer Wisconsin Data Set Also you can

Faeze Habibi 0 Apr 06, 2022
CLIP + VQGAN / PixelDraw

clipit Yet Another VQGAN-CLIP Codebase This started as a fork of @nerdyrodent's VQGAN-CLIP code which was based on the notebooks of @RiversWithWings a

dribnet 276 Dec 12, 2022
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [PaddlePaddle Implementation] Homepage of paper: Paint Transformer: Fee

442 Dec 16, 2022
TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video

TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video Timely handgun detection is a cr

Mario Duran-Vega 18 Dec 26, 2022
This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''.

Sparse VAE This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''. Data Sources The datasets used in this paper wer

Gemma Moran 17 Dec 12, 2022
2.86% and 15.85% on CIFAR-10 and CIFAR-100

Shake-Shake regularization This repository contains the code for the paper Shake-Shake regularization. This arxiv paper is an extension of Shake-Shake

Xavier Gastaldi 294 Nov 22, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022