LIVECell - A large-scale dataset for label-free live cell segmentation

Related tags

Deep LearningLIVECell
Overview

LIVECell dataset

This document contains instructions of how to access the data associated with the submitted manuscript "LIVECell - A large-scale dataset for label-free live cell segmentation" by Edlund et. al. 2021.

Background

Light microscopy is a cheap, accessible, non-invasive modality that when combined with well-established protocols of two-dimensional cell culture facilitates high-throughput quantitative imaging to study biological phenomena. Accurate segmentation of individual cells enables exploration of complex biological questions, but this requires sophisticated imaging processing pipelines due to the low contrast and high object density. Deep learning-based methods are considered state-of-the-art for most computer vision problems but require vast amounts of annotated data, for which there is no suitable resource available in the field of label-free cellular imaging. To address this gap we present LIVECell, a high-quality, manually annotated and expert-validated dataset that is the largest of its kind to date, consisting of over 1.6 million cells from a diverse set of cell morphologies and culture densities. To further demonstrate its utility, we provide convolutional neural network-based models trained and evaluated on LIVECell.

How to access LIVECell

All images in LIVECell are available following this link (requires 1.3 GB). Annotations for the different experiments are linked below. To see a more details regarding benchmarks and how to use our models, see this link.

LIVECell-wide train and evaluate

Annotation set URL
Training set link
Validation set link
Test set link

Single cell-type experiments

Cell Type Training set Validation set Test set
A172 link link link
BT474 link link link
BV-2 link link link
Huh7 link link link
MCF7 link link link
SH-SHY5Y link link link
SkBr3 link link link
SK-OV-3 link link link

Dataset size experiments

Split URL
2 % link
4 % link
5 % link
25 % link
50 % link

Comparison to fluorescence-based object counts

The images and corresponding json-file with object count per image is available together with the raw fluorescent images the counts is based on.

Cell Type Images Counts Fluorescent images
A549 link link link
A172 link link link

Download all of LIVECell

The LIVECell-dataset and trained models is stored in an Amazon Web Services (AWS) S3-bucket. It is easiest to download the dataset if you have an AWS IAM-user using the AWS-CLI in the folder you would like to download the dataset to by simply:

aws s3 sync s3://livecell-dataset .

If you do not have an AWS IAM-user, the procedure is a little bit more involved. We can use curl to make an HTTP-request to get the S3 XML-response and save to files.xml:

files.xml ">
curl -H "GET /?list-type=2 HTTP/1.1" \
     -H "Host: livecell-dataset.s3.eu-central-1.amazonaws.com" \
     -H "Date: 20161025T124500Z" \
     -H "Content-Type: text/plain" http://livecell-dataset.s3.eu-central-1.amazonaws.com/ > files.xml

We then get the urls from files using grep:

)[^<]+" files.xml | sed -e 's/^/http:\/\/livecell-dataset.s3.eu-central-1.amazonaws.com\//' > urls.txt ">
grep -oPm1 "(?<=
   
    )[^<]+" files.xml | sed -e 's/^/http:\/\/livecell-dataset.s3.eu-central-1.amazonaws.com\//' > urls.txt

   

Then download the files you like using wget.

File structure

The top-level structure of the files is arranged like:

/livecell-dataset/
    ├── LIVECell_dataset_2021  
    |       ├── annotations/
    |       ├── models/
    |       ├── nuclear_count_benchmark/	
    |       └── images.zip  
    ├── README.md  
    └── LICENSE

LIVECell_dataset_2021/images

The images of the LIVECell-dataset are stored in /livecell-dataset/LIVECell_dataset_2021/images.zip along with their annotations in /livecell-dataset/LIVECell_dataset_2021/annotations/.

Within images.zip are the training/validation-set and test-set images are completely separate to facilitate fair comparison between studies. The images require 1.3 GB disk space unzipped and are arranged like:

images/
    ├── livecell_test_images
    |       └── 
   
    
    |               └── 
    
     _Phase_
     
      _
      
       _
       
        _
        
         .tif └── livecell_train_val_images └── 
          
         
        
       
      
     
    
   

Where is each of the eight cell-types in LIVECell (A172, BT474, BV2, Huh7, MCF7, SHSY5Y, SkBr3, SKOV3). Wells are the location in the 96-well plate used to culture cells, indicates location in the well where the image was acquired, the time passed since the beginning of the experiment to image acquisition and index of the crop of the original larger image. An example image name is A172_Phase_C7_1_02d16h00m_2.tif, which is an image of A172-cells, grown in well C7 where the image is acquired in position 1 two days and 16 hours after experiment start (crop position 2).

LIVECell_dataset_2021/annotations/

The annotations of LIVECell are prepared for all tasks along with the training/validation/test splits used for all experiments in the paper. The annotations require 2.1 GB of disk space and are arranged like:

annotations/
    ├── LIVECell
    |       └── livecell_coco_
   
    .json
    ├── LIVECell_single_cells
    |       └── 
    
     
    |               └── 
     
      .json
    └── LIVECell_dataset_size_split
            └── 
      
       _train
       
        percent.json 
       
      
     
    
   
  • annotations/LIVECell contains the annotations used for the LIVECell-wide train and evaluate task.
  • annotations/LIVECell_single_cells contains the annotations used for Single cell type train and evaluate as well as the Single cell type transferability tasks.
  • annotations/LIVECell_dataset_size_split contains the annotations used to investigate the impact of training set scale.

All annotations are in Microsoft COCO Object Detection-format, and can for instance be parsed by the Python package pycocotools.

models/

ALL models trained and evaluated for tasks associated with LIVECell are made available for wider use. The models are trained using detectron2, Facebook's framework for object detection and instance segmentation. The models require 15 GB of disk space and are arranged like:

models/
   └── Anchor_
   
    
            ├── ALL/
            |    └──
    
     .pth
            └── 
     
      /
                 └──
      
       .pths
       

      
     
    
   

Where each .pth is a binary file containing the model weights.

configs/

The config files for each model can be found in the LIVECell github repo

LIVECell
    └── Anchor_
   
    
            ├── livecell_config.yaml
            ├── a172_config.yaml
            ├── bt474_config.yaml
            ├── bv2_config.yaml
            ├── huh7_config.yaml
            ├── mcf7_config.yaml
            ├── shsy5y_config.yaml
            ├── skbr3_config.yaml
            └── skov3_config.yaml

   

Where each config file can be used to reproduce the training done or in combination with our model weights for usage, for more info see the usage section.

nuclear_count_benchmark/

The images and fluorescence-based object counts are stored as the label-free images in a zip-archive and the corresponding counts in a json as below:

nuclear_count_benchmark/
    ├── A172.zip
    ├── A172_counts.json
    ├── A172_fluorescent_images.zip
    ├── A549.zip
    ├── A549_counts.json 
    └── A549_fluorescent_images.zip

The json files are on the following format:

": " " } ">
{
    "
     
      ": "
      
       "
}

      
     

Where points to one of the images in the zip-archive, and refers to the object count according fluorescent nuclear labels.

LICENSE

All images, annotations and models associated with LIVECell are published under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.

All software source code associated associated with LIVECell are published under the MIT License.

Owner
Sartorius Corporate Research
Sartorius Corporate Research
SCNet: Learning Semantic Correspondence

SCNet Code Region matching code is contributed by Kai Han ([email protected]). Dense

Kai Han 34 Sep 06, 2022
Doods2 - API for detecting objects in images and video streams using Tensorflow

DOODS2 - Return of DOODS Dedicated Open Object Detection Service - Yes, it's a b

Zach 101 Jan 04, 2023
Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

Music Trees Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Ins

Hugo Flores García 32 Nov 22, 2022
Repo for flood prediction using LSTMs and HAND

Abstract Every year, floods cause billions of dollars’ worth of damages to life, crops, and property. With a proper early flood warning system in plac

1 Oct 27, 2021
render sprites into your desktop environment as shaped windows using GTK

spritegtk render static or animated sprites into your desktop environment as dynamic shaped windows using GTK requires pycairo and PYGobject: pip inst

hermit 20 Oct 27, 2022
MAT: Mask-Aware Transformer for Large Hole Image Inpainting

MAT: Mask-Aware Transformer for Large Hole Image Inpainting (CVPR2022, Oral) Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, Jiaya Jia [Paper] News This

254 Dec 29, 2022
Layered Neural Atlases for Consistent Video Editing

Layered Neural Atlases for Consistent Video Editing Project Page | Paper This repository contains an implementation for the SIGGRAPH Asia 2021 paper L

Yoni Kasten 353 Dec 27, 2022
codes for Image Inpainting with External-internal Learning and Monochromic Bottleneck

Image Inpainting with External-internal Learning and Monochromic Bottleneck This repository is for the CVPR 2021 paper: 'Image Inpainting with Externa

97 Nov 29, 2022
Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Renato Almeida de Oliveira 18 Aug 31, 2022
Differential fuzzing for the masses!

NEZHA NEZHA is an efficient and domain-independent differential fuzzer developed at Columbia University. NEZHA exploits the behavioral asymmetries bet

147 Dec 05, 2022
repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments

repro_eval repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments. The measures were d

IR Group at Technische Hochschule Köln 9 May 25, 2022
Retrieval.pytorch - The code we used in [2020 DIGIX]

Retrieval.pytorch - The code we used in [2020 DIGIX]

Guo-Hua Wang 2 Feb 07, 2022
Self-training with Weak Supervision (NAACL 2021)

This repo holds the code for our weak supervision framework, ASTRA, described in our NAACL 2021 paper: "Self-Training with Weak Supervision"

Microsoft 148 Nov 20, 2022
[ICLR 2021 Spotlight Oral] "Undistillable: Making A Nasty Teacher That CANNOT teach students", Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, Zhangyang Wang

Undistillable: Making A Nasty Teacher That CANNOT teach students "Undistillable: Making A Nasty Teacher That CANNOT teach students" Haoyu Ma, Tianlong

VITA 71 Dec 28, 2022
Node Editor Plug for Blender

NodeEditor Blender的程序化建模插件 Show Current 基本框架:自定义的tree-node-socket、tree中的node与socket采用字典查询、基于socket入度的拓扑排序 数据传递和处理依靠Tree中的字典,socket传递字典key TODO 增加更多的节点

Cuimi 11 Dec 03, 2022
PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)

PSTR (CVPR2022) This code is an official implementation of "PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)". End-to-end one-step

Jiale Cao 28 Dec 13, 2022
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

2 Jan 20, 2022
Code for the paper Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations (AKBC 2021).

Relation Prediction as an Auxiliary Training Objective for Knowledge Base Completion This repo provides the code for the paper Relation Prediction as

Facebook Research 85 Jan 02, 2023
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object

Lixin YANG 99 Dec 26, 2022
This porject is intented to build the most accurate model for predicting the porbability of loan default

Estimating-Loan-Default-Probability IBA ML2 Mid-project / Kaggle Competition This porject is intented to build the most accurate model for predicting

Adil Gahramanov 1 Jan 24, 2022