Codes for the AAAI'22 paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning"

Overview

TransZero [arXiv]

This repository contains the testing code for the paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning" accepted to AAAI 2022. We will release all codes of this work later.

Preparing Dataset and Model

We provide trained models (Google Drive) on three different datasets: CUB, SUN, AWA2 in the CZSL/GZSL setting. You can download model files as well as corresponding datasets, and organize them as follows:

.
├── saved_model
│   ├── TransZero_CUB_CZSL.pth
│   ├── TransZero_CUB_GZSL.pth
│   ├── TransZero_SUN_CZSL.pth
│   ├── TransZero_SUN_GZSL.pth
│   ├── TransZero_AWA2_CZSL.pth
│   └── TransZero_AWA2_GZSL.pth
├── data
│   ├── CUB/
│   ├── SUN/
│   └── AWA2/
└── ···

Requirements

The code implementation of TransZero mainly based on PyTorch. All of our experiments run and test in Python 3.8.8. To install all required dependencies:

$ pip install -r requirements.txt

Runing

Runing following commands and testing TransZero on different dataset:

CUB Dataset:

$ python test.py --config config/CUB_CZSL.json      # CZSL Setting
$ python test.py --config config/CUB_GZSL.json      # GZSL Setting

SUN Dataset:

$ python test.py --config config/SUN_CZSL.json      # CZSL Setting
$ python test.py --config config/SUN_GZSL.json      # GZSL Setting

AWA2 Dataset:

$ python test.py --config config/AWA2_CZSL.json     # CZSL Setting
$ python test.py --config config/AWA2_GZSL.json     # GZSL Setting

Results

Results of our released models using various evaluation protocols on three datasets, both in the conventional ZSL (CZSL) and generalized ZSL (GZSL) settings.

Dataset Acc(CZSL) U(GZSL) S(GZSL) H(GZSL)
CUB 76.8 69.3 68.3 68.8
SUN 65.6 52.6 33.4 40.8
AWA2 70.1 61.3 82.3 70.2

Note: All of above results are run on a server with an AMD Ryzen 7 5800X CPU and a NVIDIA RTX A6000 GPU.

Citation

If this work is helpful for you, please cite our paper.

@InProceedings{Chen2021TransZero,
    author    = {Chen, Shiming and Hong, Ziming and Liu, Yang and Xie, Guo-Sen and Sun, Baigui and Li, Hao and Peng, Qinmu and Lu, Ke and You, Xinge},
    title     = {TransZero: Attribute-guided Transformer for Zero-Shot Learning},
    booktitle = {Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI)},
    year      = {2022}
}

References

Parts of our codes based on:

Contact

If you have any questions about codes, please don't hesitate to contact us by [email protected] or [email protected].

Owner
Shiming Chen
Interest: Generative modeling and learning, zero-shot learning, image retrieval, domain adaptation
Shiming Chen
Source code for Task-Aware Variational Adversarial Active Learning

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

27 Nov 23, 2022
Traffic4D: Single View Reconstruction of Repetitious Activity Using Longitudinal Self-Supervision

Traffic4D: Single View Reconstruction of Repetitious Activity Using Longitudinal Self-Supervision Project | PDF | Poster Fangyu Li, N. Dinesh Reddy, X

25 Dec 21, 2022
EfficientNetV2-with-TPU - Cifar-10 case study

EfficientNetV2-with-TPU EfficientNet EfficientNetV2 adalah jenis jaringan saraf convolutional yang memiliki kecepatan pelatihan lebih cepat dan efisie

Sultan syach 1 Dec 28, 2021
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
Weakly-supervised object detection.

Wetectron Wetectron is a software system that implements state-of-the-art weakly-supervised object detection algorithms. Project CVPR'20, ECCV'20 | Pa

NVIDIA Research Projects 342 Jan 05, 2023
Contains supplementary materials for reproduce results in HMC divergence time estimation manuscript

Scalable Bayesian divergence time estimation with ratio transformations This repository contains the instructions and files to reproduce the analyses

Suchard Research Group 1 Sep 21, 2022
PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick." [Project page] [Paper

Gyungin Shin 59 Sep 25, 2022
Efficient Lottery Ticket Finding: Less Data is More

The lottery ticket hypothesis (LTH) reveals the existence of winning tickets (sparse but critical subnetworks) for dense networks, that can be trained in isolation from random initialization to match

VITA 20 Sep 04, 2022
Mall-Customers-Segmentation - Customer Segmentation Using K-Means Clustering

Overview Customer Segmentation is one the most important applications of unsupervised learning. Using clustering techniques, companies can identify th

NelakurthiSudheer 2 Jan 03, 2022
Deep Image Matting implementation in PyTorch

Deep Image Matting Deep Image Matting paper implementation in PyTorch. Differences "fc6" is dropped. Indices pooling. "fc6" is clumpy, over 100 millio

Yang Liu 724 Dec 27, 2022
Adaout is a practical and flexible regularization method with high generalization and interpretability

Adaout Adaout is a practical and flexible regularization method with high generalization and interpretability. Requirements python 3.6 (Anaconda versi

lambett 1 Feb 09, 2022
This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation This is the code relat

39 Sep 23, 2022
Bayesian Image Reconstruction using Deep Generative Models

Bayesian Image Reconstruction using Deep Generative Models R. Marinescu, D. Moyer, P. Golland For technical inquiries, please create a Github issue. F

Razvan Valentin Marinescu 51 Nov 23, 2022
LegoDNN: a block-grained scaling tool for mobile vision systems

Table of contents 1 Introduction 1.1 Major features 1.2 Architecture 2 Code and Installation 2.1 Code 2.2 Installation 3 Repository of DNNs in vision

41 Dec 24, 2022
PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

1 May 31, 2022
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Dancing to Music PyTorch implementation of the cross-modality generative model that synthesizes dance from music. Paper Hsin-Ying Lee, Xiaodong Yang,

NVIDIA Research Projects 485 Dec 26, 2022
Paddle-Skeleton-Based-Action-Recognition - DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN

Paddle-Skeleton-Action-Recognition DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN. Yo

Chenxu Peng 3 Nov 02, 2022
Clockwork Variational Autoencoder

Clockwork Variational Autoencoders (CW-VAE) Vaibhav Saxena, Jimmy Ba, Danijar Hafner If you find this code useful, please reference in your paper: @ar

Vaibhav Saxena 35 Nov 06, 2022
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

NVIDIA Research Projects 4.8k Jan 09, 2023